Job Startup at Exascale:
Challenges and Solutions

Hari Subramoni

Network Based Computing Laboratory
The Ohio State University

Network Based Computing Laboratory http://nowlab.cse.ohio-state.edu/



Current Trends in HPC

* Supercomputing systems scaling rapidly
e Multi-/Many-core architectures
* High-performance interconnects

e Core density (per node) is increasing
* Improvements in manufacturing tech
* More performance per watt

* Hybrid programming models are popular for
developing applications
* Message Passing Interface (MPI) Sunway TaihuLight
* Partitioned Global Address Space (PGAS)

Fast and scalable job-startup is essential!

Network Based Computing Laboratory SC'17 pi




Why is Job Startup Important?

Development and debugging

Regression / Acceptance testing

T, Checkpoint - Restart

Network Based Computing Laboratory



Towards Exascale: Challenges to Address

* Dynamic allocation of resources

* Leveraging high-performance
interconnects

Memory Overhead

* Exploiting opportunities for
overlap

Job Startup Performance
* Minimizing memory usage

Network Based Computing Laboratory SC'17 4




Challenge: Avoid All-to-all Connectivity

35 Application Processes Average Peers
m Connection Setup 64 g7
30 BT |
8 o5 PMI Exchange 1024 106
S 64 3.0
O 20 ) ) EP
;3, Memory Registration 1024 5.0
< 15 MG 64 9.5
© 10 | ggfﬂrsd Memory 1024 11.9
£ I 64 8.3
= 5 - SP
e 1024 10.7
O [ _— || || - - .
2D Heat o4 >3
32 64 128 256 512 1K 2K 4K 1024 5 4
Number of Processes
Connection setup phase takes 85% of Applications rarely require
initialization time with 4K processes full all-to-all connectivity

Network Based Computing Laboratory




On-demand Connection Management

Main Connection Main Connection
Thread Manager Thread Thread Manager Thread
| |
Put/Get | Create QP : :
(P2) QP> 1nit | Connect Request |
Fnaueue Send . L (LID, QPN) :
L ( gd—dFe_S;, ;i-z-e_, Fk_e§) ________________________ g Create QP
: Connect Reply : QP—>Init
: (up,@PN) | - OPPRIR
€------"-""-"°°° (address, size, rkey) I
Connection : QP->RTR :
Established I QP->RTS |
Dequeue Send I Put/Get > [
| (P2) QP—>RTS |
: Connection :
v v vEstainshed v
Process 1 Process 2

Network Based Computing Laboratory SC'17 6




Results - On-demand Connections

Performance of OpenSHMEM Execution time of OpenSHMEM NAS
Initialization and Hello World Parallel Benchmarks

__ 100 : 8
2 —+-Hello World - Static = = Static
§ 80 start_pes - Static % 6 = On-demand
£ 60 ——Hello World - On-demand 7:—
[
£ 40 —start_pes - On-demand g 4
- g
E 20 S 2

0 - ..% 0

16 32 64 128 256 512 1K 2K 4K 8K BT EP MG
Number of Processes Benchmark
Initialization — 29.6 times faster Total execution time — 35% better

On-demand Connection Management for OpenSHMEM and OpenSHMEM+MPI. S. Chakraborty, H. Subramoni, J. Perkins, A. A. Awan, and
D K Panda, 20th International Workshop on High-level Parallel Programming Models and Supportive Environments (HIPS ’15)

Network Based Computing Laboratory




Challenge: Exploit High-performance
Interconnects in PMI

Breakdown of MPI_Init in MVAPICH?2 * Used for network address exchange,
2.5 heterogeneity detection, etc.
PMI Exchanges . :
0 * Used by major parallel programming
'g 2 m Shared Memory frameworks
§ m Other
= 1.5
< BB B * Uses TCP/IP for transport
=1
2 * Not efficient for moving large amount
= of data
e Required to bootstrap high-
0 performance interconnects

32 64 128 256 512 1K 2K 4K 8K

Number of Processes
PMI = Process Management Interface

Network Based Computing Laboratory




PMIX Ring: A Scalable Alternative

- Exchange data with only the left Comparison of PMI operations

.
and right neighbors over TCP _g | Fence
=  Exchange bulk of the data over cg | Put
High-speed interconnect (e.g. 34 Gets
InfiniBand, OmniPath) §3 | —=Ring
o 2
£
int PMIX_Ring( =1
0 Le—s—a—8—8—psp—>F—s—a—s—=n
char valuel ], 16 64 256 1k 4k 16k
char left [ ] I Number of Processes
char right[],
) PMIX_Ring is more scalable

Network Based Computing Laboratory SC'17 9




Results - PMIX_Ring

Performance of MPI_Init and NAS Benchmarks with
Hello World with PMIX_Ring 1K Processes, Class B Data
I 7
6 —+Hello World (Fence) 6 = Fence
’é‘ 5 | -=Hello World (Ring) é 5 = Ring
§ 4 | —+MPI_Init (Fence) § 4
£ 3 | =<MPI_Init (proposed) = 3
g 2 g 2
= =
o 1 GE) 1
£ 0 £ 0
16 32 64 128 256 512 1K 2K 4K 8K EP MG CG FT BT SP
Number of Processes Benchmark
33% improvement in MPI_|Init Total execution time — 20% better

PMI Extensions for Scalable MPI Startup. S. Chakraborty, H. Subramoni, A. Moody, J. Perkins, M. Arnold, and D K Panda, Proceedings of the
21st European MPI Users' Group Meeting (EuroMPI/Asia '14)

Network Based Computing Laboratory




Challenge: Exploit Overlap in Application

Initialization

* PMI operations are progressed by the
process manager

* MPI/PGAS library is not involved

* Can be overlapped with other
initialization tasks / application
computation

* Put+Fence+Get combined into a single
function - Allgather

Network Based Computing Laboratory

int PMIX_KVS_Ifence(
PMIX_Request *request)

int PMIX_lallgather(
const char value[],
char buffer(],
PMIX_Request *request)

int PMIX_Wait(
PMIX_Request request)




Results - Non-blocking PMI Collectives

Performance of MPI Init Comparison of Fence and Allgather
2 ——Fence Y8 T pViz ks Fence
g 1.6 = Ifence 'g 1.2 —=PMIX_Allgather
S Allgather S
5 £ 08
£ 1.2 —<lallgather c :
3 9
S 08 | o a et < 0.4
o o000 g
£ £
- 04 -0 64 256 1K 4K 16K
64 256 1K 4K 16K
Number of Processes Number of Processes
Near-constant MPI_Init at any scale Allgather is 38% faster than Fence

Non-blocking PMI Extensions for Fast MPI Startup. S. Chakraborty, H. Subramoni, A. Moody, A. Venkatesh, J. Perkins, and D K Panda, 15th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid "15)

Network Based Computing Laboratory




Challenge: Minimize Memory Footprint

* Address table and similar information is
stored in the PMI Key-value store (KVS) Process Manager

* All processes in the node duplicate the
KVS PMI Key-Value Store (KVS)

* PPN redundant copies per node

Process 1 Process 2 Process N

PPN = Number of Processes per Node

Network Based Computing Laboratory



Shared Memory based PMI

* Process manager creates and
Hash Table (Table) populates shared memory region

S ) Top « MPI processes directly read from
l shared memory

A * Dual shared memory region based
hash-table design for performance

and memory efficiency
Tail Key Next

Network Based Computing Laboratory




Shared Memory based PM

Time Taken by one PMI_Get PMI Memory Usage
@ 10000
0 300 = ——Fence - Default
2 250 | = Default © —=Allgather - Default
3 ——Shmem S 1000 Fence - Shmem
§ 200 . -=—Allgather - Shme
E 150 o 100
£ a0
_qu 100 3 10
< 50 g
()]
= 0 " —& n " " A g 1
[ 1 5 4 8 16 32 = 32K 64K 128K 256K 512K 1M
Number of Processes Number of Processes
PMI Gets are 1000x faster Memory footprint reduced by O(PPN)

SHMEMPMI - Shared Memory based PMI for Improved Performance and Scalability. S. Chakraborty, H. Subramoni, J. Perkins, and D K
Panda, 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid ’16)

Network Based Computing Laboratory




Efficient Intra-node Topology Discovery

Previous Design Current Design
Process O Process O Process O Process O Process O Process O
hwloc hwloc hwloc hwloc hwloc
—"
Nt -
~I~
;. Contention! A /\ No Contention!
/proc/ filesystem /proc/ filesystem

Significant improvement on Many-core systems

Network Based Computing Laboratory



Startup Performance on KNL + Omni-Path

200.000

0.000

0.000

I
0.000

MRBI_InitfSecongs)

0.000

Network Based Computing Laboratory

MPI_Init on TACC Stampede-KNL

=>¢&Intel MPI 2018 beta

--MVAPICH2 2.3a

64
128
256
512

Y X
—

Number of Processes

8.8x

181K

232K

Time Taken (Seconds)

MPI_Init and Hello World on Oakforest-PACS

~o-Hello World (MVAPICH2-2.3a) 21s

->¢MPI_Init (MVAPICH2-2.3a)

5.8s

\/
7\

AV 4
7\

N/
7\

AV 4
7\

\ 2
7\

7\

X

64 128 256 512 1K 2K 4K 8K 16K 32K 64K
Number of Processes

MPI_Init takes 22 seconds on 231,956 processes on 3,624 KNL nodes (Stampede — Full scale)
8.8 times faster than Intel MPI at 128K processes (Courtesy: TACC)

At 64K processes, MPI_Init and Hello World takes 5.8s and 21s respectively (Oakforest-PACS)
All numbers reported with 64 processes per node

SC'17

17




Summary

O | PGAS/MPI - Optimized O

(O]

S @ ,n®, ©

7 S - Lo ] i G’. @ On-demand Connection
S

g g @ PMIX_Ring

qgj TS P | PGAS — State of the art (e) @ PMIX_lbarrier

o S

g _§- M | MPI - State of the art @ PMIX_lallgather

£ c

% - @ Shmem based PMI

v

Job Startup Performance

*  Near constant MPI/OpenSHMEM initialization at any process count
e 10x and 30x improvement in startup time of MPI and OpenSHMEM with 16,384 processes

(1,024 nodes)
*  Full scale startup on Stampede2 under 22 seconds with 232K processes

e O(PPN) reduction in PMI memory footprint

Optimized designs available in MVAPICH2 and MVAPICH2X-2.3b

Network Based Computing Laboratory




Thank Youl

http://go.osu.edu/mvapich-startup
http://mvapich.cse.ohio-state.edu/

subramon@cse.ohio-state.edu

panda@cse.ohio-state.edu

Network Based Computing Laboratory



