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Current Trends in HPC

* Supercomputing systems scaling rapidly
e Multi-/Many-core architectures
* High-performance interconnects

e Core density (per node) is increasing
* Improvements in manufacturing tech
* More performance per watt

* Hybrid programming models are popular for
developing applications
* Message Passing Interface (MPI) Sunway TaihuLight
* Partitioned Global Address Space (PGAS)

Fast and scalable job-startup is essential!
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Why is Job Startup Important?

Development and debugging

Regression / Acceptance testing

T, Checkpoint - Restart
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Towards Exascale: Challenges to Address

* Dynamic allocation of resources

* Leveraging high-performance
interconnects

Memory Overhead

* Exploiting opportunities for
overlap

Job Startup Performance
* Minimizing memory usage
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Challenge: Avoid All-to-all Connectivity
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Connection setup phase takes 85% of Applications rarely require
initialization time with 4K processes full all-to-all connectivity
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On-demand Connection Management
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Results - On-demand Connections

Performance of OpenSHMEM Execution time of OpenSHMEM NAS
Initialization and Hello World Parallel Benchmarks
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Initialization — 29.6 times faster Total execution time — 35% better

On-demand Connection Management for OpenSHMEM and OpenSHMEM+MPI. S. Chakraborty, H. Subramoni, J. Perkins, A. A. Awan, and
D K Panda, 20th International Workshop on High-level Parallel Programming Models and Supportive Environments (HIPS ’15)
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Challenge: Exploit High-performance
Interconnects in PMI

Breakdown of MPI_Init in MVAPICH?2 * Used for network address exchange,
2.5 heterogeneity detection, etc.
PMI Exchanges . :
0 * Used by major parallel programming
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2 * Not efficient for moving large amount
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e Required to bootstrap high-
0 performance interconnects
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PMI = Process Management Interface
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PMIX Ring: A Scalable Alternative

- Exchange data with only the left Comparison of PMI operations

.
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=  Exchange bulk of the data over cg | Put
High-speed interconnect (e.g. 34 Gets
InfiniBand, OmniPath) §3 | —=Ring
o 2
£
int PMIX_Ring( =1
0 Le—s—a—8—8—psp—>F—s—a—s—=n
char valuel ], 16 64 256 1k 4k 16k
char left [ ] I Number of Processes
char right[],
) PMIX_Ring is more scalable
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Results - PMIX_Ring

Performance of MPI_Init and NAS Benchmarks with
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33% improvement in MPI_|Init Total execution time — 20% better

PMI Extensions for Scalable MPI Startup. S. Chakraborty, H. Subramoni, A. Moody, J. Perkins, M. Arnold, and D K Panda, Proceedings of the
21st European MPI Users' Group Meeting (EuroMPI/Asia '14)
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Challenge: Exploit Overlap in Application

Initialization

* PMI operations are progressed by the
process manager

* MPI/PGAS library is not involved

* Can be overlapped with other
initialization tasks / application
computation

* Put+Fence+Get combined into a single
function - Allgather
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int PMIX_KVS_Ifence(
PMIX_Request *request)

int PMIX_lallgather(
const char value[],
char buffer(],
PMIX_Request *request)

int PMIX_Wait(
PMIX_Request request)




Results - Non-blocking PMI Collectives

Performance of MPI Init Comparison of Fence and Allgather
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Near-constant MPI_Init at any scale Allgather is 38% faster than Fence

Non-blocking PMI Extensions for Fast MPI Startup. S. Chakraborty, H. Subramoni, A. Moody, A. Venkatesh, J. Perkins, and D K Panda, 15th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid "15)
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Challenge: Minimize Memory Footprint

* Address table and similar information is
stored in the PMI Key-value store (KVS) Process Manager

* All processes in the node duplicate the
KVS PMI Key-Value Store (KVS)

* PPN redundant copies per node

Process 1 Process 2 Process N

PPN = Number of Processes per Node
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Shared Memory based PMI

* Process manager creates and
Hash Table (Table) populates shared memory region

S ) Top « MPI processes directly read from
l shared memory

A * Dual shared memory region based
hash-table design for performance

and memory efficiency
Tail Key Next
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Shared Memory based PM

Time Taken by one PMI_Get PMI Memory Usage
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PMI Gets are 1000x faster Memory footprint reduced by O(PPN)

SHMEMPMI - Shared Memory based PMI for Improved Performance and Scalability. S. Chakraborty, H. Subramoni, J. Perkins, and D K
Panda, 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid ’16)
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Efficient Intra-node Topology Discovery
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Significant improvement on Many-core systems
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Startup Performance on KNL + Omni-Path
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MPI_Init on TACC Stampede-KNL
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MPI_Init and Hello World on Oakforest-PACS
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MPI_Init takes 22 seconds on 231,956 processes on 3,624 KNL nodes (Stampede — Full scale)
8.8 times faster than Intel MPI at 128K processes (Courtesy: TACC)

At 64K processes, MPI_Init and Hello World takes 5.8s and 21s respectively (Oakforest-PACS)
All numbers reported with 64 processes per node
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Summary
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Job Startup Performance

*  Near constant MPI/OpenSHMEM initialization at any process count
e 10x and 30x improvement in startup time of MPI and OpenSHMEM with 16,384 processes

(1,024 nodes)
*  Full scale startup on Stampede2 under 22 seconds with 232K processes

e O(PPN) reduction in PMI memory footprint

Optimized designs available in MVAPICH2 and MVAPICH2X-2.3b
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Thank Youl

http://go.osu.edu/mvapich-startup
http://mvapich.cse.ohio-state.edu/

subramon@cse.ohio-state.edu

panda@cse.ohio-state.edu
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