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• Deep Learning is a sub-set of Machine Learning

– But, it is perhaps the most radical and revolutionary 

subset

• Deep Learning is going through a resurgence

– Model: Excellent accuracy for deep/convolutional 

neural networks

– Data: Public availability of versatile datasets like 

MNIST, CIFAR, and ImageNet

– Capability: Unprecedented computing and 

communication capabilities: Multi-/Many-Core, 

GPGPUs, Xeon Phi, InfiniBand, RoCE, etc.

• Big Data has become one of the most important 

elements in business analytics

– Increasing demand for getting Big Value out of Big 

Data to drive the revenue continuously growing

Why Deep Learning is so hot?

Courtesy: http://www.zdnet.com/article/caffe2-deep-learning-wide-ambitions-
flexibility-scalability-and-advocacy/

MNIST handwritten digits Deep Neural Network

http://www.zdnet.com/article/caffe2-deep-learning-wide-ambitions-flexibility-scalability-and-advocacy/
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Application Example of DL: Flickr’s Magic View Photo Filtering

Courtesy: https://thenextweb.com/opinion/2015/05/22/flickrs-new-magic-view-photo-filtering-feature-works-so-well-it-convinced-me-to-ditch-iphoto/#.tnw_RaZEaD6g

• Image recognition to divide pictures into surprisingly accurate categories

• Magic of AI/DL:  Generate accurate tags for billions of pictures
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(1) Prepare 
Datasets @Scale

(2) Deep 
Learning @Scale

(3) Non-deep 
learning 

analytics @Scale

(4) Apply ML 
model @Scale

• Deep Learning over Big Data (DLoBD) is one of the most efficient analyzing paradigms

• More and more deep learning tools or libraries (e.g., Caffe, TensorFlow) start running over big 

data stacks, such as Apache Hadoop and Spark

• Benefits of the DLoBD approach

– Easily build a powerful data analytics pipeline

• E.g., Flickr DL/ML Pipeline, “How Deep Learning Powers Flickr”, http://bit.ly/1KIDfof

– Better data locality

– Efficient resource sharing and cost effective

Deep Learning over Big Data (DLoBD)



OSU Booth at SC 2018 5Network Based Computing Laboratory

• CaffeOnSpark 

• SparkNet

• TensorFlowOnSpark

• TensorFrame

• DeepLearning4J

• BigDL

• mmlspark

– CNTKOnSpark

• Many others…

Examples of DLoBD Stacks 



OSU Booth at SC 2018 6Network Based Computing Laboratory

• Layers of DLoBD Stacks

– Deep learning application layer

– Deep learning library layer

– Big data analytics framework layer 

– Resource scheduler layer 

– Distributed file system layer 

– Hardware resource layer

• How much performance benefit we 

can achieve for end deep learning 

applications?

Overview of DLoBD Stacks

Sub-optimal

Performance

?
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Big Data 
(Hadoop, Spark, 

HBase, 
Memcached, 

etc.)

Deep Learning
(Caffe, TensorFlow, BigDL, 

etc.)

HPC 
(MPI, RDMA, 
Lustre, etc.)

Increasing Usage of HPC, Big Data and Deep Learning

Convergence of HPC, Big Data, and Deep Learning!!!
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• BLAS Libraries – the heart of math 

operations

– Atlas/OpenBLAS

– NVIDIA cuBlas

– Intel Math Kernel Library (MKL)

• DNN Libraries – the heart of Convolutions!

– NVIDIA cuDNN (already reached its 7th

iteration – cudnn-v7)

– Intel MKL-DNN (MKL 2017) – recent but a 

very promising development

• Communication Libraries – the heart of 

model parameter updating

– RDMA 

– GPUDirect RDMA

Highly-Optimized Underlying Libraries with HPC Technologies
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Outline 

• Accelerating Big Data Stacks

• Benchmarking and Characterizing DLoBD Stacks

– CaffeOnSpark, TensorFlowOnSpark, MMLSpark, and BigDL

• Accelerating DLoBD Stacks

– BigDL on RDMA-Spark 

– TensorFlow
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• Design Features

– RDMA based shuffle plugin

– SEDA-based architecture

– Dynamic connection 
management and sharing

– Non-blocking data transfer

– Off-JVM-heap buffer 
management

– InfiniBand/RoCE support

Design Overview of Spark with RDMA

• Enables high performance RDMA communication, while supporting traditional socket interface

• JNI Layer bridges Scala based Spark with communication library written in native code

X. Lu, M. W. Rahman, N. Islam, D. Shankar, and D. K. Panda, Accelerating Spark with RDMA for Big Data Processing: Early Experiences, Int'l Symposium on High 

Performance Interconnects (HotI'14), August 2014

X. Lu, D. Shankar, S. Gugnani, and D. K. Panda, High-Performance Design of Apache Spark with RDMA and Its Benefits on Various Workloads, IEEE BigData ‘16, Dec. 2016.

Spark Core

RDMA Capable Networks
(IB,  iWARP, RoCE ..)

Apache Spark Benchmarks/Applications/Libraries/Frameworks

1/10/40/100 GigE, IPoIB  Network

Java Socket Interface Java Native Interface (JNI)

Native RDMA-based Comm. Engine

Shuffle Manager (Sort, Hash, Tungsten-Sort)

Block Transfer Service (Netty, NIO, RDMA-Plugin)

Netty

Server

NIO

Server
RDMA

Server

Netty

Client

NIO

Client
RDMA

Client



OSU Booth at SC 2018 11Network Based Computing Laboratory

• High-Performance Design of Spark  over RDMA-enabled Interconnects

– High performance RDMA-enhanced design with native InfiniBand and RoCE support at the verbs-level for Spark

– RDMA-based data shuffle and SEDA-based shuffle architecture

– Non-blocking and chunk-based data transfer

– Off-JVM-heap buffer management

– Support for OpenPOWER

– Easily configurable for different protocols (native InfiniBand, RoCE, and IPoIB)

• Current release: 0.9.5

– Based on Apache Spark  2.1.0

– Tested with

• Mellanox InfiniBand adapters (DDR, QDR, FDR, and EDR)

• RoCE support with Mellanox adapters

• Various multi-core platforms (x86, POWER)

• RAM disks, SSDs, and HDD

– http://hibd.cse.ohio-state.edu

RDMA for Apache Spark Distribution

http://hadoop-rdma.cse.ohio-state.edu/
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• RDMA for Apache Hadoop 2.x and RDMA for Apache Spark are installed and 

available on SDSC Comet.

– Examples for various modes of usage are available in:

• RDMA for Apache Hadoop 2.x: /share/apps/examples/HADOOP

• RDMA for Apache Spark: /share/apps/examples/SPARK/

– Please email help@xsede.org (reference Comet as the machine, and SDSC as the 

site) if you have any further questions about usage and configuration. 

• RDMA for Apache Hadoop is also available on Chameleon Cloud as an 

appliance

– https://www.chameleoncloud.org/appliances/17/

HiBD Packages on SDSC Comet and Chameleon Cloud

M. Tatineni, X. Lu, D. J. Choi, A. Majumdar, and D. K. Panda, Experiences and Benefits of Running RDMA Hadoop and Spark on SDSC 

Comet,  XSEDE’16, July 2016

https://www.chameleoncloud.org/appliances/17/
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• InfiniBand FDR, SSD, 32/64 Worker Nodes, 768/1536 Cores, (768/1536M 768/1536R)

• RDMA-based design for Spark 1.5.1 

• RDMA vs. IPoIB with 768/1536 concurrent tasks, single SSD per node. 

– 32 nodes/768 cores: Total time reduced by 37% over IPoIB (56Gbps) 

– 64 nodes/1536 cores: Total time reduced by 43% over IPoIB (56Gbps) 

Performance Evaluation on SDSC Comet – HiBench PageRank

32 Worker Nodes, 768 cores, PageRank Total Time 64 Worker Nodes, 1536 cores, PageRank Total Time
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Outline 

• Accelerating Big Data Stacks

• Benchmarking and Characterizing DLoBD Stacks

– CaffeOnSpark, TensorFlowOnSpark, MMLSpark, and BigDL

• Accelerating DLoBD Stacks

– BigDL on RDMA-Spark 

– TensorFlow
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• Choose proper DL workloads, models and 

datasets

– Varied sizes to cover big and small models. 

Small and large data sets

– Cover different kinds of combinations

• Choose representative DLoBD stacks 

– CaffeOnSpark, TensorFlowOnSpark, and BigDL

– Running over Spark, Yarn, HDFS

Benchmarking and Characterization Methodology

• Define characterization dimensions

– Processor Type

– Parameter updating approach (i.e., communication)

– Network Protocol (IPoIB, RDMA)

• Generate evaluation reports 

– Performance (End-to-end training time; time to a certain 

accuracy; epoch execution time)

– Accuracy, Scalability, Resource Utilization

– Breakdown
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• Spark Driver: Job Launching and Job 

Control

• Spark Executor: For data feeding and task 

control

• Model Synchronizer: Communicates across 

nodes with RDMA / TCP, and output model 

file on HDFS

• Scalable and Communication intensive

 Server-to-server direct communication 

(Ethernet or InfiniBand) achieves faster 

learning and eliminates scalability 

bottleneck

 Out-of-band communication

Overview of Representative DLoBD Stacks - CaffeOnSpark
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• Spark Executors acting as containers 

used to run TensorFlow code

• Two different modes to ingesting data

– Read data directly from HDFS using 

built-in TensorFlow modules 

– Feeding data from Spark RDDs to Spark 

executors (TensorFlow core)

• Scalable and Communication intensive

 Parameter Server-based approach

 Embedded inside one Spark executor and 

talk to other workers over gRPC or gPRC

with RDMA

 Out-of-band communication

Overview of Representative DLoBD Stacks - TensorFlowOnSpark
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• Microsoft Cognitive Toolkit (CNTK) and 

OpenCV into Spark Machine Learning 

pipelines without data transfer overhead 

• Feeding data for CNTK Core (e.g. images 

or texts) can be directly read from HDFS 

by Spark Executors 

• Scalable and Communication intensive

 Embedded inside one Spark executor and 

talk to other workers over MPI (RDMA, 

TCP)

 Out-of-band communication

Overview of Representative DLoBD Stacks – CNTKOnSpark/MMLSpark
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• Users can write deep learning applications as 

Spark programs

• Users can load pre-trained Caffe or Torch 

models into Spark programs using BigDL

• Feed data to BigDL core by Spark Executor 

which can directly load data from HDFS

• High performance

– Support Intel MKL 

– Support both  Xeon and Xeon Phi (e.g., KNL)

• Scalable and Communication intensive

– Spark block manager as parameter server

– Organically designed and integrated with 

Spark architecture

– In-band Communication

• RDMA communication can be achieved through 

our RDMA-Spark package!

Overview of Representative DLoBD Stacks - BigDL
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MNIST CIFAR-10 ImageNet

Category Digit Classification Object Classification Object Classification 

Resolution 28 × 28 B&W 32 × 32 Color 256 × 256 Color 

Classes 10 10 1000

Training Images 60 K 50 K 1.2 M

Tesing Images 10 K 10 K 100 K

Selected Various Datasets and Models

Model Layers (Conv. / Full-connected) Dataset Framework

LeNet 2 / 2 MNIST CaffeOnSpark, TensorFlowOnSpark

SoftMax Regression NA / NA MNIST TensorFlowOnSpark 

CIFAR-10 Quick 3 / 1 CIFAR-10 CaffeOnSpark, TensorFlowOnSpark, MMLSpark

VGG-16 13 / 3 CIFAR-10 BigDL

AlexNet 5 / 3 ImageNet CaffeOnSpark 

GoogLeNet 22 / 0 ImageNet CaffeOnSpark 

Resnet-50 53/1 Synthetic TensorFlow
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Performance Characterization for CPU-/GPU-based Deep Learning 
with CaffeOnSpark 

0

1000

2000

3000

4000

5000

6000

1 2 4 8 16

E
n
d

-t
o
-E

n
d
 T

im
e 

(s
ec

s)

Number of Nodes (one device/node) 

CIFAR-10 Quick
CPU+OpenBlas

CPU+MKL

GPU

GPU+cuDNN

0

200

400

600

800

1000

1200

1 2 4 8 16

E
n

d
-t

o
-E

n
d
 T

im
e 

(s
ec

s)

Number of Nodes (one device/node) 

LeNet on MNIST
CPU+OpenBlas

CPU+MKL

GPU

GPU+cuDNN

6
3
%

9
1
.2

6
%

9
8
.0

8
%

7
8
.3

%
4
1
.5

%
1
5
.9

%

8
1
.3

1
%

8
8
.9

1
%

9
6
.7

8
%

8
0
.0

8
%

6
3
.9

2
%

• DL workloads can benefit from the high performance of the DLoBD stacks. 

• Network will become a bottleneck at some point if the sub-optimal IPoIB network protocol is used.

• GPU/GPU+cuDNN can get the best performance. GPU + cuDNN is degraded at a large scale (e.g., 16 nodes).

• For some models, solutions with CPU + MKL may outperform GPU-based solutions.
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Performance Characterization for IPoIB and RDMA with 
CaffeOnSpark and TensorFlowOnSpark (IB EDR)

• CaffeOnSpark benefits from the high performance of RDMA compared to IPoIB once 
communication overhead becomes significant.

• Our experiments show that the default RDMA design in TensorFlowOnSpark is not fully 
optimized yet. For MNIST tests, RDMA is not showing obvious benefits.
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Performance Characterization with MMLSpark
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• The solution of GPU + cuDNN performs best, up to 55x faster than CPU + OpenBLAS, and up to 15x

than CPU + MKL. 

• OpenMPI-based communication over IPoIB and RDMA; Similar performance; The latency and 

bandwidth of IPoIB in this cluster are sufficient for small models.

• Could not find other benchmarks with bigger models for MMLSpark
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Characterization on Performance and Accuracy 
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• Performance Evaluation of CaffeOnSpark (training time to achieve a 70% accuracy)
– RDMA reduces the overall time cost by 22% in training AlexNet on ImageNet

– RDMA reduces the overall time cost by 15% in training GoogleNet on ImageNet

• Performance Evaluation of BigDL (training time to achieve a 70% accuracy)
– RDMA reduces the overall time cost by 48% in training VGG on CIFAR-10
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Memory and Network Utilization of CaffeOnSpark

• CIFAR-10 Quick Model and CIFAR-10 Dataset

• GPU-based solutions use less memory than CPU-based ones as they mostly use GPU memory. 

• CPU + MKL solution uses host memory more efficiently and has better performance than CPU + 
OpenBLAS.

• RDMA utilizes the network resources more efficiently than the IPoIB in CaffeOnSpark. 

• CaffeOnSpark still does not fully utilize the high throughput characteristic of RDMA and memory 
resource.
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• SoftMax Regression model, over MNIST 

dataset 

• Up to 15.5% time in Apache Hadoop

YARN scheduler layer 

• Up to 18.1% execution time in Spark job 

execution layer 

• Data size is small, so we do not count 

the time spent on accessing HDFS layer. 

• Need more effort to reduce the 

overhead across different layers of 

DLoBD stacks

• Maybe amortized in long-running deep 

learning jobs

Performance Overhead across Layers in DLoBD Stacks
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• RDMA can benefit DL workloads

– Up to 2.7x speedup with RDMA compared to the IPoIB scheme for deep learning workloads. 

– RDMA can scale better and utilize resources more efficiently than IPoIB over InfiniBand clusters

• GPU-based DL designs can outperform CPU-based designs, but not always 

– LeNet on MNIST, CPU + MKL achieved better performance than GPU and GPU + cuDNN on 8/16 

nodes 

• Large rooms for further improvement in DLoBD stacks!!!

• We need more benchmarks, public datasets, and analysis tools!!!

Insights and Guidance 

X. Lu, H. Shi, M. H. Javed, R. Biswas, and D. K. Panda, Characterizing Deep Learning over Big Data (DLoBD) Stacks on RDMA-capable Networks, HotI 2017. 

X. Lu, H. Shi, R. Biswas, M. H. Javed, and D. K. Panda, DLoBD: A Comprehensive Study on the Emerging Paradigm of Deep Learning over Big Data Stacks, (Under 

Review). 
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Outline 

• Accelerating Big Data Stacks

• Benchmarking and Characterizing DLoBD Stacks

– CaffeOnSpark, TensorFlowOnSpark, MMLSpark, and BigDL

• Accelerating DLoBD Stacks

– BigDL on RDMA-Spark 

– TensorFlow
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Epoch-Level Evaluation with BigDL on SDSC Comet 

0

10

20

30

40

50

60

10

510

1010

1510

2010

2510

3010

3510

4010

4510

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A
cc

u
ra

cy
 (

%
)

A
cc

u
m

u
la

ti
v

e 
E

p
o

ch
s 

T
im

e 
(s

ec
s)

 

Epoch Number

IPoIB-Time

RDMA-Time

IPoIB-Accuracy

RDMA-Accuracy

VGG on CIFAR-10 with BigDL

• Epoch-level evaluation of 

training VGG model using 

BigDL on default Spark with 

IPoIB and our RDMA-based 

Spark.

• RDMA version takes 

constantly less time than 

the IPoIB version to finish 

every epoch.

– RDMA finishes epoch 18 in 

2.6x time faster than IPoIB

2.6X
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Scalability Evaluation with BigDL on SDSC Comet

• Using BigDL with IPoIB & RDMA Spark

• For VGG model trained with BigDL, RDMA-
based Spark scales better than default 
IPoIB Spark 

• For 384 CPU cores, 18 epochs and same 
batch size, RDMA takes about 870 seconds 
while IPoIB takes 2,372 seconds

• A speedup of 2.7x using RDMA for the 
epoch-level training time
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Outline 

• Accelerating Big Data Stacks

• Benchmarking and Characterizing DLoBD Stacks

– CaffeOnSpark, TensorFlowOnSpark, MMLSpark, and BigDL

• Accelerating DLoBD Stacks

– BigDL on RDMA-Spark 

– TensorFlow
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Overview of gRPC with TensorFlow

Worker services communicate among each other using gRPC, or gRPC+X! 

Client Master

Worker 

/job:PS/task:0

Worker 

/job:Worker/task:0

CPU GPU

gRPC server/ client 

CPU GPU

gRPC server/ client 

mailto:panda@cse.ohio-state.edu
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Performance Benefits for RDMA-gRPC with Micro-Benchmark

RDMA-gRPC RPC Latency

• gRPC-RDMA Latency on SDSC-Comet-FDR
– Up to 2.7x performance speedup over IPoIB for Latency for small messages

– Up to 2.8x performance speedup over IPoIB for Latency for medium messages

– Up to 2.5x performance speedup over IPoIB for Latency for large messages
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R. Biswas, X. Lu, and D. K. Panda, Accelerating gRPC and TensorFlow with RDMA for High-Performance Deep Learning over InfiniBand, Under Review.
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• TensorFlow Resnet50 performance evaluation on an IB EDR cluster

– Up to 35% performance speedup over IPoIB for 4 nodes.

– Up to 41% performance speedup over IPoIB for 8 nodes.

4 Nodes 8 Nodes
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TensorFlow Inception3 performance evaluation on an IB EDR cluster
• Up to 27% performance speedup over IPoIB for 4 nodes
• Up to 36% performance speedup over IPoIB for 8 nodes.

4 Nodes 8 Nodes

27%

36%



OSU Booth at SC 2018 36Network Based Computing Laboratory

• Discussed challenges in benchmarking, characterizing, and accelerating  Deep 

Learning over Big Data (DLoBD) stacks

• RDMA can benefit DL workloads as showed by our RDMA-Spark, AR-gRPC, and 

other RDMA designs 

• Many other open issues need to be solved 

• Will enable Big Data and Deep Learning community to take advantage of 

modern HPC technologies to carry out their analytics in a fast and scalable 

manner 

Concluding Remarks



OSU Booth at SC 2018 37Network Based Computing Laboratory

luxi@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~luxi

Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

mailto:luxi@cse.ohio-state.edu
http://nowlab.cse.ohio-state.edu/

