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• Multiple tiers + Workflow

– Front-end data accessing and serving (Online)
• Memcached + DB (e.g. MySQL), HBase, etc.

– Back-end data analytics and deep learning model training (Offline)
• HDFS, MapReduce, Spark, TensorFlow, BigDL, Caffe, etc.

Big Data Processing and Deep Learning on Modern Clusters
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Drivers of Modern HPC Cluster Architectures

Tianhe – 2 Titan Stampede Tianhe – 1A 

• Multi-core/many-core technologies

• Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)

• Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD

• Accelerators (NVIDIA GPGPUs and Intel Xeon Phi)

Accelerators / Coprocessors 
high compute density, high 

performance/watt
>1 TFlop DP on a chip 

High Performance Interconnects -
InfiniBand

<1usec latency, 100Gbps Bandwidth>Multi-core Processors SSD, NVMe-SSD, NVRAM
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Interconnects and Protocols in OpenFabrics Stack for HPC
(http://openfabrics.org)
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• 177 IB Clusters (35%) in the Jun’17 Top500 list

– (http://www.top500.org)

• Installations in the Top 50 (18 systems):

Large-scale InfiniBand Installations

241,108 cores (Pleiades) at NASA/Ames (15th) 152,692 cores (Thunder) at AFRL/USA (36th)

220,800  cores (Pangea) in France (19th) 99,072 cores (Mistral) at DKRZ/Germany (38th)

522,080 cores (Stampede) at TACC (20th) 147,456 cores (SuperMUC) in  Germany (40th)

144,900 cores (Cheyenne) at NCAR/USA (22nd) 86,016 cores (SuperMUC Phase 2) in  Germany (41st)

72,800 cores Cray CS-Storm in US (27th) 74,520 cores (Tsubame 2.5) at Japan/GSIC (44th)

72,800 cores Cray CS-Storm in US (28th) 66,000 cores (HPC3) in Italy (47sth)

124,200 cores (Topaz) SGI ICE at ERDC DSRC in US  (30th) 194,616 cores (Cascade) at PNNL (49th)

60,512 cores (DGX-1) at Facebook/USA (31st) 85,824 cores (Occigen2) at GENCI/CINES in France (50th)

60,512 cores (DGX SATURNV) at NVIDIA/USA (32nd) 73,902 cores (Centennial) at ARL/USA (52nd)

72,000 cores (HPC2) in Italy (33rd) and many more!

http://www.top500.org/
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Big Data 
(Hadoop, Spark, 

HBase, 
Memcached, 

etc.)

Deep Learning
(Caffe, TensorFlow, BigDL, 

etc.)

HPC 
(MPI, RDMA, 
Lustre, etc.)

Increasing Usage of HPC, Big Data and Deep Learning

Convergence of HPC, Big Data, and Deep Learning!!!
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How Can HPC Clusters with High-Performance Interconnect and Storage 
Architectures Benefit Big Data and Deep Learning Applications?

Bring HPC, Big Data processing, and Deep 
Learning into a “convergent trajectory”!

What are the major 
bottlenecks in current Big 

Data processing and 
Deep Learning 

middleware (e.g. Hadoop, 
Spark)?

Can the bottlenecks be 
alleviated with new 

designs by taking 
advantage of HPC 

technologies?

Can RDMA-enabled
high-performance 

interconnects
benefit Big Data 

processing and Deep 
Learning?

Can HPC Clusters with 
high-performance 

storage systems (e.g. 
SSD, parallel file 

systems) benefit Big 
Data and Deep Learning 

applications?

How much 
performance benefits

can be achieved 
through enhanced 

designs?

How to design 
benchmarks for  
evaluating the 

performance of Big Data 
and Deep Learning
middleware on HPC 

clusters?
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Can We Run Big Data and Deep Learning Jobs on Existing HPC 
Infrastructure?
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Can We Run Big Data and Deep Learning Jobs on Existing HPC 
Infrastructure?
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Can We Run Big Data and Deep Learning Jobs on Existing HPC 
Infrastructure?
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Can We Run Big Data and Deep Learning Jobs on Existing HPC 
Infrastructure?
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Designing Communication and I/O Libraries for Big Data Systems: 
Challenges 

Big Data Middleware
(HDFS, MapReduce, HBase, Spark and Memcached)

Networking Technologies
(InfiniBand, 1/10/40/100 GigE

and Intelligent NICs)

Storage Technologies
(HDD, SSD, and NVMe-SSD)

Programming Models
(Sockets)

Applications

Commodity Computing System 
Architectures

(Multi- and Many-core 
architectures and accelerators)

Other Protocols?

Communication and I/O Library
Point-to-Point

Communication

QoS

Threaded Models
and Synchronization

Fault-ToleranceI/O and File Systems

Virtualization

Benchmarks

Upper level 
Changes?
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• RDMA for Apache Spark 

• RDMA for Apache Hadoop 2.x (RDMA-Hadoop-2.x)
– Plugins for Apache, Hortonworks (HDP) and Cloudera (CDH) Hadoop distributions

• RDMA for Apache HBase

• RDMA for Memcached (RDMA-Memcached)

• RDMA for Apache Hadoop 1.x (RDMA-Hadoop)

• OSU HiBD-Benchmarks (OHB)

– HDFS, Memcached, HBase, and Spark Micro-benchmarks

• http://hibd.cse.ohio-state.edu

• Users Base: 260 organizations from 31 countries

• More than 23,900 downloads from the project site

The High-Performance Big Data (HiBD) Project

Available for InfiniBand and RoCE
Also run on Ethernet

http://hibd.cse.ohio-state.edu/
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• Basic Designs
– Hadoop
– Spark
– Memcached

• Advanced Designs
– Memcached with Hybrid Memory and Non-blocking APIs
– Efficient Indexing with RDMA-HBase
– TensorFlow with RDMA-gRPC
– Deep Learning over Big Data

• BigData + HPC Cloud

Acceleration Case Studies and Performance Evaluation
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• Enables high performance RDMA communication, while supporting traditional socket interface
• JNI Layer bridges Java based HDFS with communication library written in native code

Design Overview of HDFS with RDMA

HDFS

Verbs

RDMA Capable Networks
(IB, iWARP, RoCE ..)

Applications

1/10/40/100 GigE, IPoIB 
Network

Java Socket Interface Java Native Interface (JNI)
WriteOthers

OSU Design

• Design Features
– RDMA-based HDFS write
– RDMA-based HDFS 

replication
– Parallel replication support
– On-demand connection 

setup
– InfiniBand/RoCE support

N. S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar, H. Wang, H. Subramoni, C. Murthy and D. K. Panda , High Performance RDMA-Based Design of HDFS 
over InfiniBand , Supercomputing (SC), Nov 2012

N. Islam, X. Lu, W. Rahman, and D. K. Panda, SOR-HDFS: A SEDA-based Approach to Maximize Overlapping in RDMA-Enhanced HDFS,  HPDC '14,  June 2014
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Triple-H

Heterogeneous Storage

• Design Features
– Three modes

• Default (HHH)

• In-Memory (HHH-M)

• Lustre-Integrated (HHH-L)

– Policies to efficiently utilize the heterogeneous 
storage devices

• RAM, SSD, HDD, Lustre

– Eviction/Promotion based on data usage 
pattern

– Hybrid Replication

– Lustre-Integrated mode:

• Lustre-based fault-tolerance

Enhanced HDFS with In-Memory and Heterogeneous Storage

Hybrid Replication

Data Placement Policies

Eviction/Promotion

RAM Disk SSD HDD

Lustre

N. Islam, X. Lu, M. W. Rahman, D. Shankar, and D. K. Panda, Triple-H:  A Hybrid Approach to Accelerate HDFS on HPC Clusters 
with Heterogeneous Storage Architecture, CCGrid ’15,  May 2015

Applications
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Design Overview of MapReduce with RDMA

MapReduce

Verbs

RDMA Capable Networks
(IB, iWARP, RoCE ..)

OSU Design

Applications

1/10/40/100 GigE, IPoIB 
Network

Java Socket Interface Java Native Interface (JNI)

Job
Tracker

Task
Tracker

Map

Reduce

• Enables high performance RDMA communication, while supporting traditional socket interface
• JNI Layer bridges Java based MapReduce with communication library written in native code

• Design Features
– RDMA-based shuffle
– Prefetching and caching map output
– Efficient Shuffle Algorithms
– In-memory merge
– On-demand Shuffle Adjustment
– Advanced overlapping

• map, shuffle, and merge

• shuffle, merge, and reduce

– On-demand connection setup
– InfiniBand/RoCE support

M. W. Rahman, X. Lu, N. S. Islam, and D. K. Panda, HOMR: A Hybrid Approach to Exploit Maximum Overlapping in 
MapReduce over High Performance Interconnects, ICS, June 2014
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Performance Numbers of RDMA for Apache Hadoop 2.x –
RandomWriter & TeraGen in OSU-RI2 (EDR)

Cluster with 8 Nodes with a total of 64 maps

• RandomWriter
– 3x improvement over IPoIB 

for 80-160 GB file size

• TeraGen
– 4x improvement over IPoIB for 

80-240 GB file size

RandomWriter TeraGen

Reduced by 3x Reduced by 4x
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Performance Numbers of RDMA for Apache Hadoop 2.x – Sort & TeraSort 
in OSU-RI2 (EDR)

Cluster with 8 Nodes with a total of 
64 maps and 32 reduces

• Sort
– 61% improvement over IPoIB for 

80-160 GB data 

• TeraSort
– 18% improvement over IPoIB for 

80-240 GB data

Reduced by 61%
Reduced by 18%

Cluster with 8 Nodes with a total of 
64 maps and 14 reduces

Sort TeraSort
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• Design Features
– RDMA based shuffle plugin
– SEDA-based architecture
– Dynamic connection 

management and sharing
– Non-blocking data transfer
– Off-JVM-heap buffer 

management
– InfiniBand/RoCE support

Design Overview of Spark with RDMA

• Enables high performance RDMA communication, while supporting traditional socket interface

• JNI Layer bridges Scala based Spark with communication library written in native code
X. Lu, M. W. Rahman, N. Islam, D. Shankar, and D. K. Panda, Accelerating Spark with RDMA for Big Data Processing: Early Experiences, Int'l Symposium on High 
Performance Interconnects (HotI'14), August 2014

X. Lu, D. Shankar, S. Gugnani, and D. K. Panda, High-Performance Design of Apache Spark with RDMA and Its Benefits on Various Workloads, IEEE BigData ‘16, Dec. 2016.

Spark Core

RDMA Capable Networks
(IB, iWARP, RoCE ..)

Apache Spark Benchmarks/Applications/Libraries/Frameworks

1/10/40/100 GigE, IPoIB Network

Java Socket Interface Java Native Interface (JNI)

Native RDMA-based Comm. Engine

Shuffle Manager (Sort, Hash, Tungsten-Sort)

Block Transfer Service (Netty, NIO, RDMA-Plugin)
Netty
Server

NIO
Server

RDMA
Server

Netty
Client

NIO
Client

RDMA
Client
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• InfiniBand FDR, SSD, 32/64 Worker Nodes, 768/1536 Cores, (768/1536M 768/1536R)

• RDMA-based design for Spark 1.5.1 

• RDMA vs. IPoIB with 768/1536 concurrent tasks, single SSD per node. 
– 32 nodes/768 cores: Total time reduced by 37% over IPoIB (56Gbps) 

– 64 nodes/1536 cores: Total time reduced by 43% over IPoIB (56Gbps) 

Performance Evaluation on SDSC Comet – HiBench PageRank

32 Worker Nodes, 768 cores, PageRank Total Time 64 Worker Nodes, 1536 cores, PageRank Total Time
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• Memcached Get latency
– 4 bytes OSU-IB: 2.84 us; IPoIB: 75.53 us, 2K bytes OSU-IB: 4.49 us; IPoIB: 123.42 us

• Memcached Throughput (4bytes)
– 4080 clients OSU-IB: 556 Kops/sec, IPoIB: 233 Kops/s, Nearly 2X improvement in throughput

Memcached GET Latency Memcached Throughput

Memcached Performance (FDR Interconnect)

Experiments on TACC Stampede (Intel SandyBridge Cluster, IB: FDR)

Latency Reduced 
by nearly 20X 2X

J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang, M. W. Rahman, N. Islam, X. Ouyang, H. Wang, S. Sur and D. K. Panda, Memcached Design on High 
Performance RDMA Capable Interconnects, ICPP’11

J. Jose, H. Subramoni, K. Kandalla, M. W. Rahman, H. Wang, S. Narravula, and D. K. Panda, Scalable Memcached design for InfiniBand Clusters using Hybrid 
Transport, CCGrid’12 
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• Basic Designs
– Hadoop
– Spark
– Memcached

• Advanced Designs
– Memcached with Hybrid Memory and Non-blocking APIs
– Efficient Indexing with RDMA-HBase
– TensorFlow with RDMA-gRPC
– Deep Learning over Big Data

• BigData + HPC Cloud

Acceleration Case Studies and Performance Evaluation
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– Memcached latency test with Zipf distribution, server with 1 GB memory, 32 KB key-value pair size, total 
size of data accessed is 1 GB (when data fits in memory) and 1.5 GB (when data does not fit in memory) 

– When data fits in memory: RDMA-Mem/Hybrid gives 5x improvement over IPoIB-Mem

– When data does not fit in memory: RDMA-Hybrid gives 2x-2.5x over IPoIB/RDMA-Mem

Performance Evaluation on IB FDR + SATA/NVMe SSDs (Hybrid Memory)
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– Data does not fit in memory: Non-blocking Memcached Set/Get API Extensions can achieve
• >16x latency improvement vs. blocking API over RDMA-Hybrid/RDMA-Mem w/ penalty
• >2.5x throughput improvement vs. blocking API over default/optimized RDMA-Hybrid

– Data fits in memory: Non-blocking Extensions perform similar to RDMA-Mem/RDMA-Hybrid and >3.6x 
improvement over IPoIB-Mem 

Performance Evaluation with Non-Blocking Memcached API
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H = Hybrid Memcached over SATA SSD  Opt = Adaptive slab manager  Block = Default Blocking API 
NonB-i = Non-blocking iset/iget API   NonB-b = Non-blocking bset/bget API w/ buffer re-use guarantee
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• InfiniBand QDR, 24GB RAM + PCIe-SSDs, 12 nodes, 32/48 Map/Reduce Tasks, 4-node Memcached cluster
• Boldio can improve 

– throughput over Lustre by about 3x for write throughput and 7x for read throughput
– execution time of Hadoop benchmarks over Lustre, e.g. Wordcount, Cloudburst by >21%

• Contrasting with Alluxio (formerly Tachyon) 
– Performance degrades about 15x when Alluxio cannot leverage local storage (Alluxio-Local vs. Alluxio-Remote)
– Boldio can improve throughput over Alluxio with all remote workers by about 3.5x - 8 .8x (Alluxio-Remote vs. Boldio)

Performance Evaluation with Boldio for Lustre + Burst-Buffer

Hadoop/Spark Workloads

21%
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D. Shankar, X. Lu, D. K. Panda, Boldio: A Hybrid and Resilient Burst-Buffer over Lustre for Accelerating Big Data I/O, IEEE Big Data 2016.
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• Challenges
– Operations on Distributed Ordered Table (DOT) 

with indexing techniques are network intensive

– Additional overhead of creating and maintaining 
secondary indices

– Can RDMA benefit indexing techniques (Apache 
Phoenix and CCIndex) on HBase?

• Results
– Evaluation with Apache Phoenix and CCIndex

– Up to 2x improvement in query throughput

– Up to 35% reduction in application workload 
execution time

Collaboration with Institute of Computing Technology, 
Chinese Academy of Sciences

Accelerating Indexing Techniques on HBase with RDMA

S. Gugnani, X. Lu, L. Zha, and D. K. Panda, Characterizing and Accelerating Indexing Techniques on Distributed Ordered Tables, 
IEEE BigData, 2017.
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Overview of RDMA-gRPC with TensorFlow

Worker services communicate among each other using RDMA-gRPC 

Client Master

Worker 
/job:PS/task:0

Worker 
/job:Worker/task:0

CPU GPU

RDMA gRPC server/ client 

CPU GPU

RDMA gRPC server/ client 

mailto:panda@cse.ohio-state.edu
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Performance Benefit for TensorFlow

• TensorFlow performance evaluation on RI2
– Up to 19% performance speedup over IPoIB for Sigmoid net (20 epochs).
– Up to 35% and 30% performance speedup over IPoIB for resnet50 and Inception3 (batch size 8).

sigmoid net CNN
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R. Biswas, X. Lu, and D. K. Panda, Accelerating gRPC and TensorFlow with RDMA for High-Performance Deep Learning over InfiniBand, Under Review.
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X. Lu, H. Shi, M. H. Javed, R. Biswas, and D. K. Panda, Characterizing Deep Learning over Big Data (DLoBD) Stacks on RDMA-capable Networks, HotI 2017. 

High-Performance Deep Learning over Big Data (DLoBD) Stacks
• Challenges of Deep Learning over Big Data 

(DLoBD)
 Can RDMA-based designs in DLoBD stacks improve 

performance, scalability, and resource utilization 
on high-performance interconnects, GPUs, and 
multi-core CPUs? 

 What are the performance characteristics of 
representative DLoBD stacks on RDMA networks?

• Characterization on DLoBD Stacks
 CaffeOnSpark, TensorFlowOnSpark, and BigDL
 IPoIB vs. RDMA; In-band communication vs. Out-

of-band communication; CPU vs. GPU; etc.
 Performance, accuracy, scalability, and resource 

utilization 
 RDMA-based DLoBD stacks (e.g., BigDL over 

RDMA-Spark) can achieve 2.6x speedup compared 
to the IPoIB based scheme, while maintain similar 
accuracy
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• Basic Designs
– Hadoop
– Spark
– Memcached

• Advanced Designs
– Memcached with Hybrid Memory and Non-blocking APIs
– Efficient Indexing with RDMA-HBase
– TensorFlow with RDMA-gRPC
– Deep Learning over Big Data

• BigData + HPC Cloud

Acceleration Case Studies and Performance Evaluation
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• Challenges
– Existing designs in Hadoop not virtualization-

aware

– No support for automatic topology detection

• Design
– Automatic Topology Detection using

MapReduce-based utility

• Requires no user input

• Can detect topology changes during 
runtime without affecting running jobs 

– Virtualization and topology-aware 
communication through map task scheduling and 
YARN container allocation policy extensions

Virtualization-aware and Automatic Topology Detection 
Schemes in Hadoop on InfiniBand

S. Gugnani, X. Lu, and D. K. Panda, Designing Virtualization-aware and Automatic Topology Detection Schemes for Accelerating 
Hadoop on SR-IOV-enabled Clouds, CloudCom’16,  December 2016
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• Discussed challenges in accelerating Big Data middleware with HPC 
technologies

• Presented basic and advanced designs to take advantage of InfiniBand/RDMA 
for HDFS, MapReduce, RPC, HBase, Memcached, Spark, gRPC, and TensorFlow

• Results are promising 

• Many other open issues need to be solved 

• Will enable Big Data community to take advantage of modern HPC 
technologies to carry out their analytics in a fast and scalable manner 

• Looking forward to collaboration with the community

Concluding Remarks
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• Tutorial 

– Big Data Meets HPC: Exploiting HPC Technologies for Accelerating Big Data Processing and Management (Sunday, 1:30-5:00 
pm, Room #201)

• BoF

– BigData and Deep Learning (Tuesday, 5:15-6:45pm, Room #702)

– SigHPC Big Data BoF (Wednesday, 12:15-1:15pm, Room #603)

– Clouds for HPC, Big Data, and Deep Learning (Wednesday, 5:15-7:00pm, Room #701)

• Booth Talks

– OSU Booth (Tuesday, 10:00-11:00am, Booth #1875)

– Mellanox Theater (Wednesday, 3:00-3:30pm, Booth #653)

– OSU Booth (Thursday, 1:00-2:00pm, Booth #1875)

• Student Poster Presentation

– Accelerating Big Data processing in Cloud (Tuesday, 5:15-7:00pm, Four Seasons Ballroom)

• Details at http://hibd.cse.ohio-state.edu

OSU Participating at Multiple Events on BigData Acceleration
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Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
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