
Consistency Issues

▪ Traditional applications reliant on POSIX-like 
consistency

▪ Cloud storage solutions provide Eventual 
Consistency (EC)

▪ Application migration to the cloud is not 
straightforward

▪ Consistency guarantees are required

POSIX-like consistent Cloud Storage

▪ Atomicity as a way to guarantee consistency

▪ Two-phase commit (2PC) for atomic write 
operations

▪ Client-side caching to improve read/write 
performance

▪ Compatibility with HDFS API: MapReduce 
workloads can directly run on cloud storage

Evaluation with SwiftFS and HDFS

▪ Up to 83% improvement over SwiftFS

▪ Up to 64% improvement over HDFS

▪ With HDFS, data is copied from Swift

▪ Best performance and guaranteed 
consistency

Limited Scalability in Cloud Storage

▪ Proxy server design in Swift limits 
throughput since all operations are routed 
through the proxy server

▪ Server-side replication limits scalability

▪ Network communication is slow TCP-based

Scalable Cloud Storage: Swift-X

▪ Use proxy server only as a metadata server

▪ Client-based replication for scalability

▪ RDMA-based communication for high-
performance

▪ Non-blocking semantics for efficient overlap 
between communication and I/O

Evaluation with OpenStack Swift

▪ Up to 47% and 66% reduction in PUT and 
GET latencies

▪ Communication time reduced by up to 3.8x
for PUT and up to 2.8x for GET

▪ Up to 7.3x improvement in read throughput 
for cloud storage

Slow Network Communication

▪ TCP-based communication causes 
bottlenecks

▪ Each message transfer leads to context 
switches

▪ Software-based network virtualization leads 
to further slowdown

Modern Networking Protocols

▪ InfiniBand and RoCE provide RDMA-based 
efficient communication

▪ SR-IOV offers hardware-based network 
virtualization

▪ With SR-IOV,  VMs can directly access the 
network adapter

▪ Comprehensive evaluation of Hadoop 
workloads on IB clusters with SR-IOV

Evaluation on Virtual Cluster

▪ Less than 9% overhead for applications 
compared to native execution

▪ Selecting correct VM subscription policy can 
deliver near-native performance

▪ Up to 74% improvement for TeraGen, 21% 
for TeraSort for RDMA over IPoIB

Current Trends in Big Data
▪ Huge increase in cloud deployments running Big 

Data analytics

▪ Analytics performed on data stored in cloud storage

▪ System and job sizes constantly increasing

▪ High-performance solutions for Big Data in the 

cloud essential

Importance of Big Data in Cloud
▪ Inherent flexibility and scalability

▪ Tremendous cost saving

▪ Built-in reliability and fault-tolerance

Network Communication Bottlenecks
▪ Not aware of topology and locality

▪ Slow TCP-based

Scalability Issues
▪ Cloud storage solutions have limited scalability

▪ Limited number of gateway or proxy servers limits 

operation throughput

Consistency Issues
▪ Cloud storage systems typically provide Eventual 

Consistency (EC)

▪ EC is not sufficient for traditional applications 

expecting POSIX-like consistency

Proposed Designs
High-performance communication[1]

▪ Use of RDMA-based low latency communication

▪ Use of SR-IOV hardware virtualization with VMs

Topology-aware communication[2]

▪ MapReduce-based automatic topology detection

▪ Locality and topology-aware communication and 

scheduling

High-performance Cloud Storage[3]

▪ RDMA-based communication

▪ Re-designed scalable architecture with client-based 

replication

POSIX-like consistent Cloud Storage

▪ Proposed use of atomic operations to provide 

consistency

▪ Implemented 2PC for write operations

Contributions
▪ Near-native performance (< 9% overhead) for 

applications in virtualized environments

▪ Scalable automatic topology detection

▪ Efficient topology and locality-aware communication

▪ High-performance and consistent cloud storage

▪ Ability to run version control, database, and big data 

applications directly on cloud storage 

Publications
[1] Performance Characterization of Hadoop Workloads on SR-IOV-enabled 

Virtualized InfiniBand Clusters.  (Gugnani et al,  BDCAT ’16)
[2] Designing Virtualization-aware and Automatic Topology Detection 

Schemes for Accelerating Hadoop on SR-IOV-enabled Clouds.  (Gugnani et 

al,  CloudCom ‘16)
[3] Swift-X:  Accelerating OpenStack Swift with RDMA for Building an 

Efficient HPC Cloud.  (Gugnani et al,  CCGrid ’17)

More Information
▪ http://hibd.cse.ohio-state.edu/

▪ Proposed designs will be released soon!

Accelerating Big Data Processing in the Cloud with Scalable Communication and I/O Schemes
Shashank Gugnani, Dhabaleswar K. Panda (Advisor), The Ohio State University
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Inefficient Communication

▪ For large-sized clusters, topology-aware 
communication is paramount

▪ Existing topology-aware designs in Hadoop 
are not optimized for cloud environments

▪ No service that can automatically detect 
cluster topology and expose it to Hadoop

Topology-aware Communication

▪ Automatic topology detection module can 
detect topology changes during runtime

▪ Maximize communication between co-
located VMs

▪ Allocate Containers and Map tasks on a co-
located VM before other VMs

Evaluation with RDMA-Hadoop

▪ Up to 52% improvement over RDMA-
Hadoop for benchmarks

▪ Up to 55% improvement over RDMA-
Hadoop for applications

▪ Proposed design delivers the best 
performance and fault-tolerance
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8 Nodes, 1 Proxy Server

8 Nodes, 2 Proxy Servers

Process Location Number of Hops Latency (us)

Intra-Rack
Inter-Chassis 0 Hops in Leaf Switch 1.57

Intra-Chassis 1 Hop in Leaf Switch 2.04

Inter-Rack -
3 Hops in Leaf Switch 2.45

5 Hops in Leaf Switch 2.85

Reference: https://confluence.pegasus.isi.edu/download/attachments/5242944/topology-aware-poster.pdf

Communication Data from TACC Ranger System
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