
Consistency Issues

▪ Traditional applications reliant on POSIX-like
consistency

▪ Cloud storage solutions provide Eventual
Consistency (EC)

▪ Application migration to the cloud is not
straightforward

▪ Consistency guarantees are required

POSIX-like consistent Cloud Storage

▪ Atomicity as a way to guarantee consistency

▪ Two-phase commit (2PC) for atomic write
operations

▪ Client-side caching to improve read/write
performance

▪ Compatibility with HDFS API: MapReduce
workloads can directly run on cloud storage

Evaluation with SwiftFS and HDFS

▪ Up to 83% improvement over SwiftFS

▪ Up to 64% improvement over HDFS

▪ With HDFS, data is copied from Swift

▪ Best performance and guaranteed
consistency

Limited Scalability in Cloud Storage

▪ Proxy server design in Swift limits
throughput since all operations are routed
through the proxy server

▪ Server-side replication limits scalability

▪ Network communication is slow TCP-based

Scalable Cloud Storage: Swift-X

▪ Use proxy server only as a metadata server

▪ Client-based replication for scalability

▪ RDMA-based communication for high-
performance

▪ Non-blocking semantics for efficient overlap
between communication and I/O

Evaluation with OpenStack Swift

▪ Up to 47% and 66% reduction in PUT and
GET latencies

▪ Communication time reduced by up to 3.8x
for PUT and up to 2.8x for GET

▪ Up to 7.3x improvement in read throughput
for cloud storage

Slow Network Communication

▪ TCP-based communication causes
bottlenecks

▪ Each message transfer leads to context
switches

▪ Software-based network virtualization leads
to further slowdown

Modern Networking Protocols

▪ InfiniBand and RoCE provide RDMA-based
efficient communication

▪ SR-IOV offers hardware-based network
virtualization

▪ With SR-IOV, VMs can directly access the
network adapter

▪ Comprehensive evaluation of Hadoop
workloads on IB clusters with SR-IOV

Evaluation on Virtual Cluster

▪ Less than 9% overhead for applications
compared to native execution

▪ Selecting correct VM subscription policy can
deliver near-native performance

▪ Up to 74% improvement for TeraGen, 21%
for TeraSort for RDMA over IPoIB

Current Trends in Big Data
▪ Huge increase in cloud deployments running Big

Data analytics

▪ Analytics performed on data stored in cloud storage

▪ System and job sizes constantly increasing

▪ High-performance solutions for Big Data in the

cloud essential

Importance of Big Data in Cloud
▪ Inherent flexibility and scalability

▪ Tremendous cost saving

▪ Built-in reliability and fault-tolerance

Network Communication Bottlenecks
▪ Not aware of topology and locality

▪ Slow TCP-based

Scalability Issues
▪ Cloud storage solutions have limited scalability

▪ Limited number of gateway or proxy servers limits

operation throughput

Consistency Issues
▪ Cloud storage systems typically provide Eventual

Consistency (EC)

▪ EC is not sufficient for traditional applications

expecting POSIX-like consistency

Proposed Designs
High-performance communication[1]

▪ Use of RDMA-based low latency communication

▪ Use of SR-IOV hardware virtualization with VMs

Topology-aware communication[2]

▪ MapReduce-based automatic topology detection

▪ Locality and topology-aware communication and

scheduling

High-performance Cloud Storage[3]

▪ RDMA-based communication

▪ Re-designed scalable architecture with client-based

replication

POSIX-like consistent Cloud Storage

▪ Proposed use of atomic operations to provide

consistency

▪ Implemented 2PC for write operations

Contributions
▪ Near-native performance (< 9% overhead) for

applications in virtualized environments

▪ Scalable automatic topology detection

▪ Efficient topology and locality-aware communication

▪ High-performance and consistent cloud storage

▪ Ability to run version control, database, and big data

applications directly on cloud storage

Publications
[1] Performance Characterization of Hadoop Workloads on SR-IOV-enabled

Virtualized InfiniBand Clusters. (Gugnani et al, BDCAT ’16)
[2] Designing Virtualization-aware and Automatic Topology Detection

Schemes for Accelerating Hadoop on SR-IOV-enabled Clouds. (Gugnani et

al, CloudCom ‘16)
[3] Swift-X: Accelerating OpenStack Swift with RDMA for Building an

Efficient HPC Cloud. (Gugnani et al, CCGrid ’17)

More Information
▪ http://hibd.cse.ohio-state.edu/

▪ Proposed designs will be released soon!

Accelerating Big Data Processing in the Cloud with Scalable Communication and I/O Schemes
Shashank Gugnani, Dhabaleswar K. Panda (Advisor), The Ohio State University

ResultsProposed DesignsChallengesOverview

NIC PF VF VF

PCI Express

IOMMU

Hypervisor

VM VM

SR-IOV Overview

Send PUT or GET request

Default: TCP

Proposed: RDMA

Swift Design Overview

Storage

Server

Storage

Server

Storage

Server

Disk Disk Disk Disk Disk Disk

Client

Proxy Server / Metadata Server

Proxy Replica1 Replica2 Replica3
Client Proxy Replica1 Replica2Replica3

T
im

e Request

Phase

Commit

Phase

Metadata Request

Write

Write ACK

Write Complete

Write to Disk

Legend

Default Write Design
Consistency not guaranteed Proposed Write Design

Consistency guaranteed

Metadata Request

Write

Write ACK

Write Complete

Write to Disk

Commit Write

Commit Request

Legend

Inefficient Communication

▪ For large-sized clusters, topology-aware
communication is paramount

▪ Existing topology-aware designs in Hadoop
are not optimized for cloud environments

▪ No service that can automatically detect
cluster topology and expose it to Hadoop

Topology-aware Communication

▪ Automatic topology detection module can
detect topology changes during runtime

▪ Maximize communication between co-
located VMs

▪ Allocate Containers and Map tasks on a co-
located VM before other VMs

Evaluation with RDMA-Hadoop

▪ Up to 52% improvement over RDMA-
Hadoop for benchmarks

▪ Up to 55% improvement over RDMA-
Hadoop for applications

▪ Proposed design delivers the best
performance and fault-tolerance

Client

T
im

e

Public

Switch

Proxy Server

Object Servers

Internet

OpenStack

Compute Nodes1

2

Metadata Request

GET/PUT

Request

GET/PUT

Request

Proposed Usage Scenarios

Other

Custom
10 Gig. Ethernet
InfiniBand
Omni-Path
Proprietary

Gigabit Ethernet

Efficiency data from Top500 Supercomputers

VM3

VM4

VM1

VM2

Rack 1

Host 2Host 1

Resource Manager

VM5 VM6

Rack 2
Host 3

Default Hadoop Policy

1. Node local

2. Rack local

3. Off-rack

Container

Request

Proposed Policy

1. Node local

2. Host local

3. Rack local

4. Off-rack

1 1 2 3

2 2 2 3
3 43 4

Proposed Container Allocation Policy

0

100

200

300

400

500

600

700

800

900

1000

8 12 16 24 32 40 48 56 64 72 80

R
e
q
u
e
st

s
p
e
r

Se
co

n
d

Number of Clients

Scalability Evaluation

8 Nodes, 1 Proxy Server

8 Nodes, 2 Proxy Servers

Process Location Number of Hops Latency (us)

Intra-Rack
Inter-Chassis 0 Hops in Leaf Switch 1.57

Intra-Chassis 1 Hop in Leaf Switch 2.04

Inter-Rack -
3 Hops in Leaf Switch 2.45

5 Hops in Leaf Switch 2.85

Reference: https://confluence.pegasus.isi.edu/download/attachments/5242944/topology-aware-poster.pdf

Communication Data from TACC Ranger System
0

1000

2000

3000

4000

5000

6000

7000

8000

40 GB 60 GB 40 GB 60 GB 40 GB 60 GB

E
X

E
C

U
T

IO
N

 T
IM

E

RDMA-Hadoop

Proposed

0

50

100

150

200

250

300

350

400

Default

Mode

Distributed

Mode

Default

Mode

Distributed

Mode

E
X

E
C

U
T

IO
N

 T
IM

E RDMA-Hadoop

Proposed

PageRank Sort WordCount CloudBurst Self Join

Benchmark Evaluation Application Evaluation

0

50

100

150

200

250

300

20 GB 40 GB 20 GB 40 GB

E
x
e
cu

ti
o
n
 T

im
e

IPoIB (56 Gbps)

RDMA-IB (56 Gbps)

74% Reduction

TeraGen TeraSort 0

200

400

600

800

1000

1200

1400

MR-MS Polygraph Self Join

E
x
e
cu

ti
o
n
 T

im
e

Native (1 DN, 1 NM)

Native (2 DN, 2 NM)

 VM per node

VM per socket

Application EvaluationCommunication Mode Evaluation

0

5

10

15

20

25

L
A

T
E
N

C
Y

 (
S)

OBJECT SIZE

Swift PUT Swift-X PUT

Swift GET Swift-X GET

0

5

10

15

20

25

30

35

Swift PUT Swift-X

PUT

Swift GET Swift-X

GET

L
A

T
E
N

C
Y

 (
S)

Communication I/O

Hashsum Other

Breakup Evaluation PUT and GET Evaluation

0

500

1000

1500

2000

2500

20 GB 40 GB 60 GB

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

Data Size

HDFS

SwiftFS

Swift-X

Evaluation with WordCount

E
ff
ic

ie
n
cy

 (
%

)

High-Performance

Big Data

Negligible Overhead

55% Reduction

52% Reduction

64% Reduction

83% Reduction

