

Overview

Current Trends in Big Data

- Huge increase in cloud deployments running Big Data analytics
- Analytics performed on data stored in cloud storage
- System and job sizes constantly increasing
- High-performance solutions for Big Data in the cloud essential

Importance of Big Data in Cloud

Inherent flexibility and scalability

- Tremendous cost saving
- Built-in reliability and fault-tolerance

Network Communication Bottlenecks

- Not aware of topology and locality
- Slow TCP-based

Scalability Issues

- Cloud storage solutions have limited scalability
- Limited number of gateway or proxy servers limits operation throughput

Consistency Issues

- Cloud storage systems typically provide Eventual Consistency (EC)
- EC is not sufficient for traditional applications expecting POSIX-like consistency

Proposed Designs

- High-performance communication^[1]
- Use of RDMA-based low latency communication
- Use of SR-IOV hardware virtualization with VMs
- **Topology-aware communication**^[2]
- MapReduce-based automatic topology detection
- Locality and topology-aware communication and scheduling
- High-performance Cloud Storage^[3]
- **RDMA-based** communication
- Re-designed scalable architecture with client-based replication
- **POSIX-like consistent Cloud Storage**
- Proposed use of atomic operations to provide consistency
- Implemented 2PC for write operations

Contributions

- Near-native performance (< 9% overhead) for</p> applications in virtualized environments
- Scalable automatic topology detection
- Efficient topology and locality-aware communication
- High-performance and consistent cloud storage
- Ability to run version control, database, and big data applications directly on cloud storage

Publications

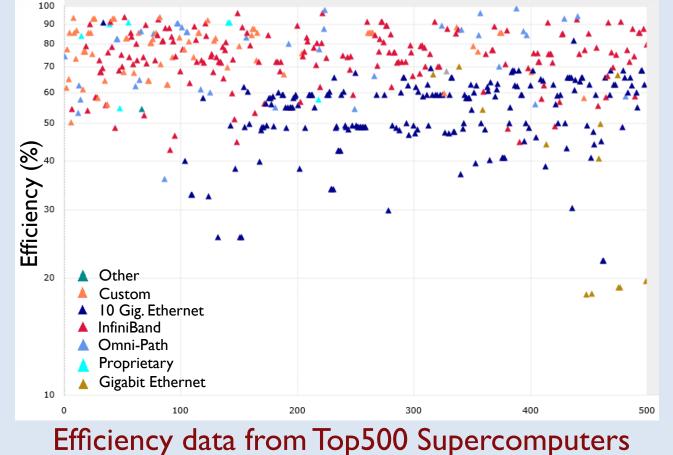
^[1] Performance Characterization of Hadoop Workloads on SR-IOV-enabled Virtualized InfiniBand Clusters. (Gugnani et al, BDCAT '16) ^[2] Designing Virtualization-aware and Automatic Topology Detection

Schemes for Accelerating Hadoop on SR-IOV-enabled Clouds. (Gugnani et al, CloudCom '16)

^[3] Swift-X: Accelerating OpenStack Swift with RDMA for Building an Efficient HPC Cloud. (Gugnani et al, CCGrid '17)

More Information

- http://hibd.cse.ohio-state.edu/
- Proposed designs will be released soon!



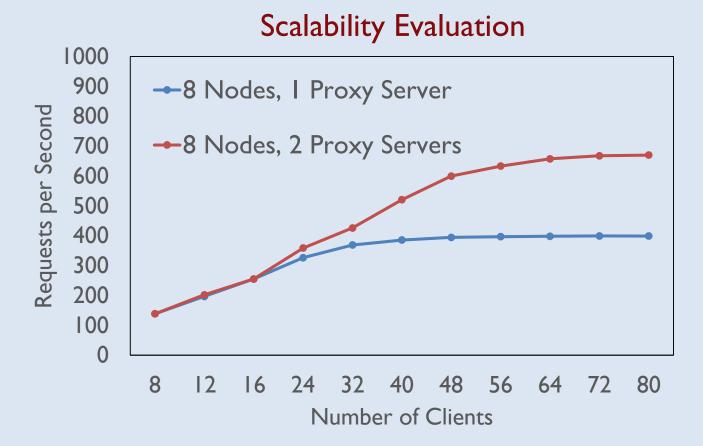
Accelerating Big Data Processing in the Cloud with Scalable Communication and I/O Schemes 💦 HibD Shashank Gugnani, Dhabaleswar K. Panda (Advisor), The Ohio State University

Challenges

Slow Network Communication

- TCP-based communication causes bottlenecks
- Each message transfer leads to context switches
- Software-based network virtualization leads to further slowdown

Inefficient Communication


- For large-sized clusters, topology-aware communication is paramount
- Existing topology-aware designs in Hadoop are not optimized for cloud environments
- No service that can automatically detect cluster topology and expose it to Hadoop

Process Location		Number of Hops	Latency (us)
Intra-Rack	Inter-Chassis	0 Hops in Leaf Switch	1.57
	Intra-Chassis	I Hop in Leaf Switch	2.04
Inter-Rack	-	3 Hops in Leaf Switch	2.45
		5 Hops in Leaf Switch	2.85

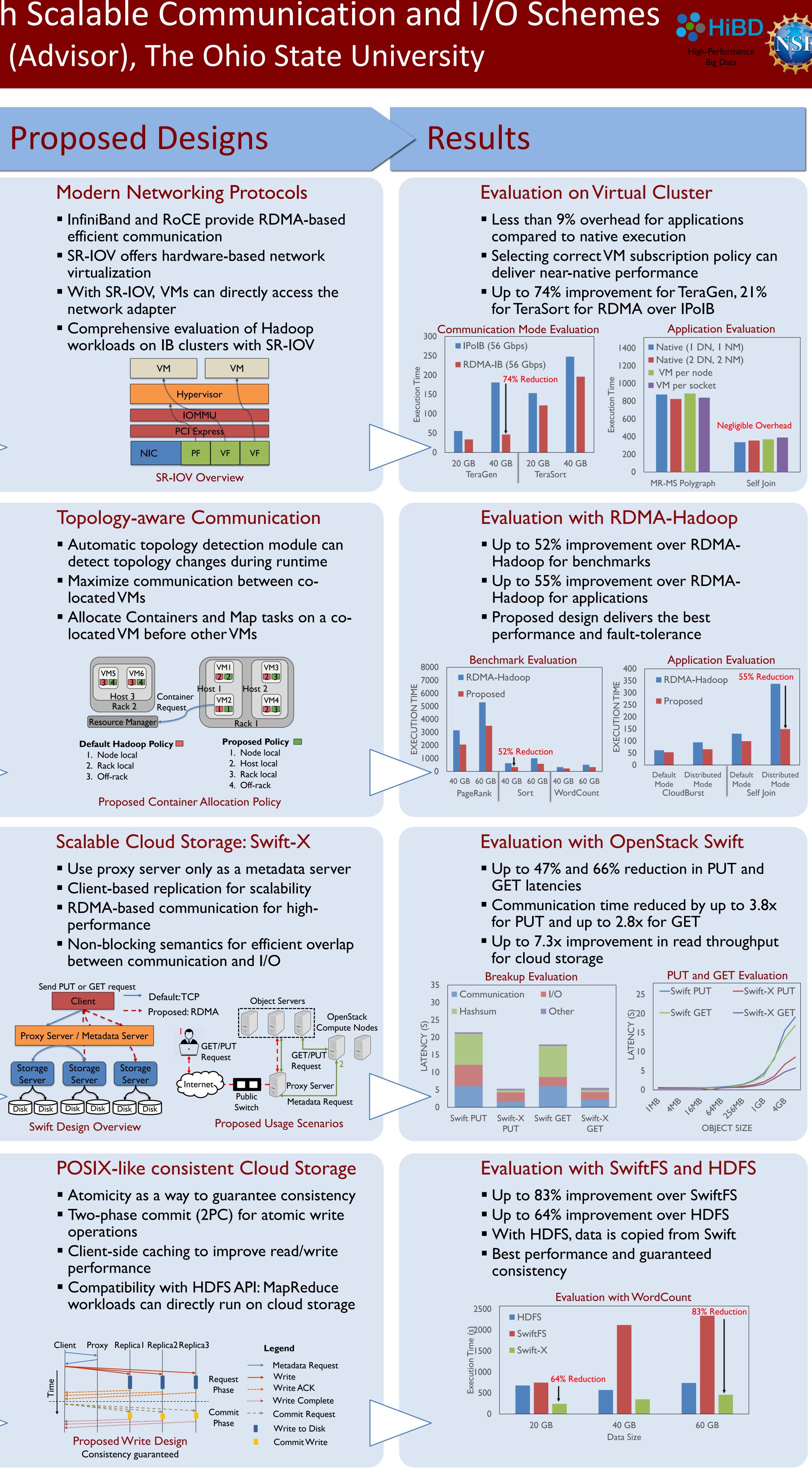
Reference: https://confluence.pegasus.isi.edu/download/attachments/5242944/topology-aware-poster.pdf Communication Data from TACC Ranger System

Limited Scalability in Cloud Storage

- Proxy server design in Swift limits throughput since all operations are routed through the proxy server
- Server-side replication limits scalability
- Network communication is slow TCP-based

Consistency Issues

- Traditional applications reliant on POSIX-like consistency
- Cloud storage solutions provide Eventual Consistency (EC)
- Application migration to the cloud is not straightforward
- Consistency guarantees are required


Client Proxy Replica | Replica 2 Replica 3

Default Write Design Consistency not guaranteed

Metadata Request

Write Complete Write to Disk

