MVAPICH

MPI, PGAS and Hybrid MPI+PGAS Library

)

Accelerating MPI Message Matching and Reduction Collectives For
Multi-/Many-core Architectures

Mohammadreza Bayatpour, Hari Subramoni, D. K. Panda

Department of Computer Science and Engineering
The Ohio State University

MVAPICH

)

MPI, PGAS and Hybrid MPI+PGAS Library

Adaptive and Dynamic Design for MPI Tag
Matching

M. Bayatpour, H. Subramoni, S. Chakraborty and D. K. Panda

Department of Computer Science and Engineering
The Ohio State University

Current Trends in HPC

. N

) Supercomputing systems scaling rapidly

e Multi- and Many-core architectures
7 o High-performance Interconnects

_ InfiniBand and Omni-Path are popular HPC Interconnects |

= . Low-latency and High-bandwidth
e 192 systems (39%) in Jun’17 Top500 use IB

MPI used by vast majority of HPC applications

e Helping applications scale to thousands of cores
e Large systems exposing new scalability issues

SC’18 Booth Talk, Bayatpour et al.

Components of an MPI Library

HPC Application

MPI Library
Blocking/Non-Blocking | MPI-3 RMA
Collectives Point-to-Point (Remote Memory Access)

| | ‘

e

v
High Performance Interconnects
High Speed
InfiniBand Omni-Path e ‘ RoCE iWARP
Ethernet

SC’18 Booth Talk, Bayatpour et al.

MPI Tag Matching 101

e On the receiver side, one needs to match the incoming
message with the message that was posted by receiver

e Three parameters should match

— Context id, Source Rank, Tag
— Wildcards (MPI_ANY_SRC, MPI_ANY_TAG) introduce additional complexity

e Two kinds of the queues are involved in the receiver side

— Posted queue

— Unexpected queue

Network Based Computing Laborator SC’18 Booth Talk, Bayatpour et al.

Search Time Analysis of the Default Double Linked List Design

e Most MPI libraries use double linked list for unexpected and posted queues

e Message to be removed could be in any position of the queue

— Removal time in the best case is O(1) and in the average case is linear O(N)
e Tag matchingis in the critical path for point-to-point based operations
e Number of the processes in a job is increasing

— Future extreme-scale systems are expected to have millions of cores*

— Multithreaded programming models

e All can push the search functions to go deeper in the lists

— Impose significant overhead on the performance

* Thakur R, Balaji P, Buntinas D, Goodell D, Gropp W, Hoefler T, Kumar S, Lusk E, Traff JL. MPI at Exascale. Proceedings of SciDAC. 2010 Jul;2:14-35.

SC’18 Booth Talk, Bayatpour et al.

Proposed Adaptive Design

e Based on the Bin-based and default simple double linked list scheme
e Three phases
— Starts with the default design

— Observes the communication pattern for each process during the runtime

— If all the conditions are held, it begins to convert the default scheme to the Bin-
based scheme

e FEach process can have its own scheme

— Some may stay at the default scheme, some may need to convert to bin-based
scheme

SC’18 Booth Talk, Bayatpour et al.

Proposed Adaptive Design (cont'd)

e For each of the posted and unexpected queues, we consider the following
thresholds

— Number of the calls to the tag matching functions in the library (CALLS_NUM)

— The average number of queue look-up attempts per CALLS_ NUM
(MACTCH_ATTMPS)

e Each process maintains both during the runtime

e |f both thresholds are crossed

— Adaptive design changes from the double linked list scheme to the bin-based scheme

SC’18 Booth Talk, Bayatpour et al.

Proposed Adaptive Design (Cont’d)

e Currently, conversion is one way from default to bin-based scheme
and may occur only one time through the entire runtime

e These thresholds are fixed through entire runtime and they are
configurable
— We have tuned them based on empirical analysis using OSU micro benchmarks

e We consider two possible sizes for NUM_BINS

— % JOB_SIZE and % JOB_SIZE
— Based on MATCH_ATTMPS, we decide which one to choose

SC’18 Booth Talk, Bayatpour et al.

Summary of Tag Matching Performance

sed

. E t:}
............................... g ased
__________ apt tive

- RO oM

oo
o W

o
.

o
no

Normalized Tag Matching Time

o

es . nas. nas.

(b) Total Tag Matching Time, Normalized to Default (Lower is Better)

e Comparison of different designs/benchmarks at 512 processes on R

e Adaptive design shows the best performance

Network Based Computing Laborator SC’18 Booth Talk, Bayatpour et al.

Summary of Memory Consumed for Tag Matching

Memory Overhead (KB)
O = M W o O Oy ~1 0 WO

Mini Lulesh nas.CG nas.EP nas.FT

(a) Memory Overhead per Process, Compared to Default (Lower 1s Better)

e Comparison of different designs/ benchmarks at 512 processes on Rl with
default design

e Adaptive designh shows minimal memory overhead

Network Based Computing Laborator SC’18 Booth Talk, Bayatpour et al.

MVAPICH

)

MPI, PGAS and Hybrid MPI+PGAS Library

Scalable Reduction Collectives with Data Partitioning-
based Multi-Leader Design

M. Bayatpour, S. Chakraborty , H. Subramoni, X. Lu, and D. K. Panda

Department of Computer Science and Engineering
The Ohio State University
Presented at Supercomputing 2017

MPI Reduction Collectives 101

e Convenient abstraction to implement group communication
operations

e Widely used across various scientific domains
— Owing to their ease of use and performance portability

e One of the most popular collective operations: MPI_Allreduce
— 37% of communication time

e MPI_Allreduce reduces values from all processes and distribute
the result back to all processes

SC’18 Booth Talk, Bayatpour et al.

Existing Designs for MPI_Allreduce

e Hierarchical strategy

e Treexhasedestebbegiesach
— Reeulrsive-Doddkioguction by root + inter-node Allreduce
* BIgRSrAD DR HISPro A RE RRSAEIBY the root process of each node

e High parallelism for computation
— All the process are involved in computation

e Pairs distance doubles after each step

e Log (P*) steps

* Bloch et al. Scalable Hierarchical Aggregation Protocol (SHArP): A Hardware Architecture for Efficient Data Reduction

SC’18 Booth Talk, Bayatpour et al.

mailto:panda@cse.ohio-state.edu

Relative Throughput of Different Architectures

e Using OSU Micro benchmark suite*
e “Multiple Bandwidth Test”
— Back-to-back messages
e Sent to a pair before waiting for receive

e Evaluates the aggregate unidirectional bandwidth between
multiple pairs of processes

e 1) Xeon + 1B, 2)Xeon + Omni-Path, and 3) KNL + Omni-Path

* http://mvapich.cse.ohio-state.edu/benchmarks/

Network Based Computing Laborator SC’18 Booth Talk, Bayatpour et al.

Relative Throughput

Communication Characteristics of Modern Architectures:

Intra-node Communication
Shared Memory (KNL)

18
m2pair m4-pair WS8-pair M 16-pair Multiple pair test vs. one pair test

O e The relative throughput very close to
{' the number of pairs

e Support many concurrent intra-node

16

=
S

= =
(00e} o N

(e)]

communication

D

| Higher is better

2

NI

1 4 16 64 256 1K 4K 16K 64K 256K 1M
Message Size (Byte)

SC’18 Booth Talk, Bayatpour et al.

Communication Characteristics of Modern Architectures:
InfiniBand Interconnect

Xeon (Haswell) + IB (EDR - 100Gbps) .])
Multiple pair test vs. one pair test

18 M 2-pair 4-pair 8-pair H 16-pair

16 e The relative throughput close to

‘. 0 .’ | the number of communicating
- ﬂw processes per node

e Support many concurrent intra-

=
S

[EEN
N

Relative Throughput
© o

(e)]

node communication

Higher is better

4

N |
LRy [l |

1 4 16 64 256 1K 4K 16K 64K 256K 1M
Message Size (Byte)

Network Based Computing Laborator SC’18 Booth Talk, Bayatpour et al.

Communication Characteristics of Modern Architectures:
Omni-Path Interconnect

KNL + Omni-Path (100 Gbps)

18 Multiple pair test vs. one pair test
8-pair H 16-pair

e The relative throughput of one for

5 large messages
<
%D /q} e Supports many concurrent
z E communications for small and
% ; medium message range
o =
= o Similar behavior observed for Xeon +

Omni-Path

256K 1M

16K 64K

1 4 16 64 256 1K aK
Message Size (Byte)

SC’18 Booth Talk, Bayatpour et al.

Performance limitations of Existing Designs for MPI_Allreduce

Does not take advantage of large number of cores and high concurrency in
communication

Does not take advantage of shared memory collectives

e Needs kernel support for zero-copy communication for large messages
in same node

Too many inter-node communication for large PPNs
Limited performance due to extra QPI transfers

Limited computing power of switches limits its performance for medium
and large message ranges

SC’18 Booth Talk, Bayatpour et al.

Design Outline

Collective
CPU
Interconnect Cluster A,B Cluster C Cluster D Not available
_ Data Partitioning Multi Leader
Designs (DPML)

SC’18 Booth Talk, Bayatpour et al.

DPML Design Phases

e Phase 1: Copy to shared Node 0

Process 1 Process 2 Process N

Memory

Local Memory

Shared

Memory

SC’18 Booth Talk, Bayatpour et al.

DPML Design Phases

e Phase 1: Copy to shared
Memory

e Phase 2: Parallel Intra-

node reduction by the

Shared R’ R’
1 Xy see see L

Memory

leaders

.
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

\
\

SC’18 Booth Talk, Bayatpour et al.

DPML Design Phases

e Phase 1: Copy to shared ' B ,
Node 1! | R1 . i
Memory i
e Phase 2: Parallel Intra- e | : . - R
, Node 2 [Ra| i = i :
node reduction by the ofe | g i ;
leaders 5 nE 5 :
Node 3 (Ra| i - 5 R’y
Node h R’ . o

Network Based Computing Laborator SC’18 Booth Talk, Bayatpour et al.

DPML Design Phases

e Phase 1: Copy to shared
Memory

e Phase 2: Parallel Intra-
node reduction by the

leaders
e Phase 3: Parallel Inter-

node Allreduce by the
leaders with same index

Network Based Computing Laborator

— i- - "1 L
I I I I I [
wosei W] - B - |-l
| i | | : |
I I I I I I
| l ! [I [
vode2 (8] 1 - (8] -][]
| i | I I I
Tk 1 K
Node 3 | R | : . | o LR
o — 1
[I : I [[
| | | | | |
I . I I I I
! L I I I I
Node h! | Re | | | . : LR
I | ' 1 i 1
:____| :, I [|

SC’18 Booth Talk, Bayatpour et al.

DPML Design Phases

e Phase 1: Copy to shared Node O Shared
Memory R, R, .. R Memory

e Phase 2: Parallel Intra- |

node reduction by the .

leaders R, R, R, Ry Local Memory
e Phase 3: Parallel Inter-
RZ R2 R2 R2
node Allreduce by the
leaders with same index
e Phase 4: Parallel R, R, R, R,
distribution of Allreduce Process1 Process?2 Process 3 Process
N
results to local buffers

SC’18 Booth Talk, Bayatpour et al.

Performance of MPI_Allreduce On Omni-Path

140

120

100

80

60

Latency (us)

40

20

0
1K

350 1800
1400
- 300 1600
200
1400
o 250
1000 1 5 X s — 1200
® = 200
800 > 1000
o S 4 X
O 150
o 2 800
600 D ©
= 100 600
400 (-2
| 400
v 50
0
4K 0 I 4K 0
Message Size 8K 128K 256K Message Size 64K 128K 256K
M Si
m MVAPICH2 Mess%‘?\/ﬁﬂze IMPI B MVAPICH2 essi—j‘agpelviZe IMPI
XEON + Omni-Path (64 Nodes, 28 PPN*) KNL + Omni-Path (32 Nodes, 32 PPN)

DPML always outperform MVAPICH2 for all medium and large message range

DPML outperform IMPI in medium message range

High parallelism of DPML benefits KNL more than XEON

*Processes Per Node

Network Based Computing Laborator SC’18 Booth Talk, Bayatpour et al.

mailto:panda@cse.ohio-state.edu

Performance of MPI_Allreduce On InfiniBand

120 3000
100 —| 2500
@)
5
— 80 — | 2000
3 —
; wn
O 60 O | 1500
S ()
9]
- —
S o
40 — | 1000
20 I I 4 500 I
128 256 K 4K 8K 16K 32K 64K 128K 256K 512K
Message Size Message Size
B MVAPICH2 DPML B MVAPICH2 DPML

XEON + IB (64 Nodes, 28 PPN)

e DPML outperform MVAPICH2 for most of the medium and large message range
— With 512K bytes, 3X improvement of DPML

e Higher benefits of DPML as the message size increases

Network Based Computing Laborator SC’18 Booth Talk, Bayatpour et al.

Performance Benefits for MiniAMR Application

80 2.4X 80
70 70
60 60
)
= 50 E 50
= L
2 40 —.| 40
§)
S 30 g 30
—~
o
20 = | 20
10 AV 10
0 0
1024 1280 2048 2560 4096 896 1792
B MVAPICH2 Numbagnpf/frocesses m |MPI B MVAPICH2 Number mf[PPddesses IMPI
KNL + Omni-Path (32 PPN) XEON + Omni-Path (28 PPN)

e For MiniAMR Application with 4096 processes, DPML can reduce the latency by 2.4X
on KNL + Omni-Path cluster

e On XEON + Omni-Path, with 1792 processes, DPML can reduce the latency by 1.5X

Network Based Computing Laborator SC’18 Booth Talk, Bayatpour et al.

MVAPICH

)

MPI, PGAS and Hybrid MPI+PGAS Library

SALaR: Scalable and Adaptive Designs for Large
Message Reduction Collectives

M. Bayatpour, J. Hashmi,
S. Chakraborty, H. Subramoni, P. Kousha, and D. K. Panda

{bayatpour.1, hashmi.29, chakraborty.52, subramoni.1, kousha.2, panda.2}

@osu.edu

Department of Computer Science and Engineering
The Ohio State University
Presented at IEEE Cluster 2018

Deep Learning (DL) Frameworks and Trends

° R enewe d interest in DL Chart 1.1 Artificial Intelligence Revenue, World Markets: 2016-2025
$40,000

— Deep Neural Networks (DNNs)

$35,000
e Tensorflow, CNTK and many more £30.000

e Excellent accuracy for

($ Millions)

deep/convolutional neural networks

$25,000
$20,000
$15,000
e Diverse applications — Image 610000
Recognition, Cancer Detection, Self- $5.000 I I |
Driving Cars, Speech Processing etc. ¢ — = m [I

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

(Source: Tractica)

https://www.top500.org/news/market-for-artificial-intelligence-projected-to-hit-36-billion-by-2025/

Network Based Computing Laborator SC’18 Booth Talk, Bayatpour et al.

https://www.top500.org/news/market-for-artificial-intelligence-projected-to-hit-36-billion-by-2025/

Why Collective Communication Matters?

99
100 95
w —
£ X _
-2 _ E
S5 75 < = 63 65
= o (@) —
S g = <
S o << E)J
e ° 50 o = 5 17
E > +— I © o S
o B n] O Q
O o (] faa) o 31 = oM
« O O - . = 27 N
° 3 a)) v 21 @ < w o 23 w GJ
v O 25 — Q — Q — o O o O
F 3 = E E 3 E E E 2
& £ ©
S € 2 o 2 . o 2 o 0 g g
o - = = = = = = = =
58 g I < < < < < < < <
MPI-FFT VASP AMG COSMO Graph500 MiniFE MILC DL-POLY HOOMD-blue

e Convenient abstraction to implement group communication
e Most application profiles showed majority of time spent in collective operations

e Optimizing collective communication directly impacts scientific applications leading
to accelerated scientific discovery

http://www.hpcadvisorycouncil.com

SC’18 Booth Talk, Bayatpour et al.

MPI Allreduce Collective

e MPI_Allreduce — Walkthrough Example

P1 | 1 P2 | 2 P3 | 3 P4 | 4

\ l

MPI_Allreduce(..., MPI_SUM, ...)

7\

PLI1 P2 1 1 P3

[

P4 | 1

Network Based Computing Laborator SC’18 Booth Talk, Bayatpour et al.

MPI Collectives used in Deep Learning

e MPI_Bcast —required for
DNN parameter exchange

e MPI_Reduce — needed for
gradient accumulation
from multiple solvers

e MPI_Allreduce —Reduce
followed by a Broadcast
can be realized as one
Allreduce

e Allreduce is the major
collective operation in
Deep Learning

1. Data

Propagation

2. Forward

Backward
Pass

Loo
P 4} > packed _comm_buff
_——:W
MPI_Bcast (CPUO0) __--==="" e \\ ________
4-’————7 az” I ~\‘ I --~-"=-
o Params L Params . Params lon Params
> 2 = 2
s LUl L L el L L L 3 L] 1]
----------------- T B
A 1 A | A | A
LT L L L e
L | | L | L
Fl = BIF—L2 B! F|lH——|s! F| |8
v Ln : v Ln : v Ln : v Ln
| | |
packed_redu | | packed_redu | packed_redu | | packed_redu
ce_buff : ce_buff : ce_buff : ce_buff
____________~_“.--‘_~ __________ YN o o e e e / e ,,."_ _________
) ~~~~~ *\\\ /,, - ————’
"\\.::“,_,. -~~~ MPI_Reduce (CPU 0)
Gradients
ApplyUpdates |« l | | | l

3. Gradient
Aggregation

A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, S-Caffe: Co-designing MPI| Runtimes and Caffe for Scalable Deep Learning on Modern GPU
Clusters. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP '17)

Network Based Computing Laborator

SC’18 Booth Talk, Bayatpour et al.

Naive Allreduce Design
P1 PZN\\D\/Se“ P3 1. Load-balancing the

MPI_Gather to Y\ et /d/ kaautigation and network
PO 6REPHECRS

. @uenlap.bf communication

AndepmpRYAGEANS
. dooédirygP@ctacstaging and
dtitersapieidle
RY&WE88 D8necessary
MPI_Bcast from A T Eﬁliciﬁ,%?rﬁiaﬂion

PO
' . Béurstie ased adaptive

Compute by PO

(root) !

$ \
3
Q
<
Y
IU)
3
Q

ges:gn

SC’18 Booth Talk, Bayatpour et al.

Performance limitations of Existing Designs for MPI_Allreduce

1. Load-balancing the computationand 3. Avoiding data copies and data staging
network resources 4. Avoiding the unnecessary synchronization

2. Overlap of communication and overheads

computation 5. Heuristic based adaptive design

State-of-the-art Allreduce Designs Feature being used
1 2 3 4 5
Baidu-Allreduce [a] v v X X X
Linear Pipelining [b] v v X X X
Reduce-scatter followed by Allgather v X X X X

[c,d]

Segmented Ring [e] v v X X X
XPMEM-based Reduction [f] X X v X X
Proposed “SALaR” v v v v v

Network Based Computing Laborator SC’18 Booth Talk, Bayatpour et al.

Research Contribution

e Designing high-performance Allreduce

Pipelined design for efficient overlap of computation and communication

Exploiting process Shared Address Space based truly zero-copy intra-node
reduction

One-sided inter-node communication to reduce synchronizations
Efficient load-balanced inter-node communication

Heuristic based adaptive design

e Modeling the proposed design

e |mproved the AlexNet training time on CNTK by up to 46%

e Reduced the latency of osu_allreduce by up to 5X at scale

Network Based Computing Laborator SC’18 Booth Talk, Bayatpour et al.

Proposed SALaR Design

e The input vector is splitted into smaller chunks

e At eachiteration, the inter-node Allreduce operation of give chunk is overlapped with
the intra-node reduction of successive chunk

e Timeline of the Processes in Node O

Process 1

Iteration {i} Iteration {i+1}

| : Bcast Chunk i : Bcast |

(Node Leader) Inter-node Allreduce Chunk {i-1} (1) Inter-node Allreduce Chunk {i} Stk
Process 2 Intra-node R.educe Wait Bcast. Chunk Intra-node Beduce Wait Bcast |
i Chunk {i} {i-1} ! Chunk {i+1} Chunk {i} |[:

Process 3 Intra-node Reduce Wait || Beast Chunk Intra-node Reduce - Bcast
i Chunk {i} -1 | Chunk {i+1} Chunk {i} ||

Process P Intra-node R'educe Wait Bcast. Chunk Intra-node !Reduce Wait Bcast_
; Chunk {i} {i-1} | Chunk {i+1} Chunk {i} |

SC’18 Booth Talk, Bayatpour et al.

Background: Shared Address-space based Communication

e XPMEM (https://github.com/hjelmn/xpmem) --- “Cross-partition Memory”

— Mechanisms for a process to “attach” to the virtual memory segment of a
remote process

— Consists of a user-space APl and a kernel module

e The receiver process can directly read/write on the remote process’ memory

, L, Sender’s Receiver’s
Sender’s Receiver's Address-space Address Space
Address-space Address Space
T : IRy et osT [l
Create Shared xpmem_get () —> T-—=—=—====- ' §
xpmem_make () address-space xpmem_attach () | [§
segment S

Network Based Computing Laborator SC’18 Booth Talk, Bayatpour et al.

https://github.com/hjelmn/xpmem

Proposed Inter-node Allreduce Design

e An efficient one-sided based Allreduce design

— Performing local reduction during Allreduce reduces the
availability of the receiver to respond handshakes quickly

— Avoids the unnecessary synchronization between the
leaders

e Phase-1 (Setup Phase)
— Buffer registration and RDMA key/address exchange

— By taking advantage of registration cache, overhead of
step-1 is visible only for the first touch to a buffer

SC’18 Booth Talk, Bayatpour et al.

Proposed Inter-node Allreduce Design (cont'd)

e Phase-2 Node1 Node2 Node3 NodeP

— The input vector (Chunk(i]) is
divided into P chunks

e (P =inter-node job size)

— Each process is responsible for
calculating the Allreduce results Phase-2
of its corresponding chunk

Node1 Node2 Node3 NodeP

e Phase-3 % % 5 R,
R, R, R, R,
— Allgather all the chunks to get
the final full results P % R, 7
Phase-3

Network Based Computing Laborator SC’18 Booth Talk, Bayatpour et al.

Outline

Introduction
Motivation
Contributions

Proposed Designs
— Design Optimizations

— Modeling

Experimental Results

e Conclusions & Future Work

SC’18 Booth Talk, Bayatpour et al.

Intra-node XPMEM-based Reduce Design

Shared Memory P, P, P,

R,l
N

N

N

N
e Using XPMEM to avoid the extra copy overhead

e There are N processes per node
e Only Non-leader processes (P2, P3, ...) are computing the intra-node

e Pl is busy with inter-node operation

SC’18 Booth Talk, Bayatpour et al.

Load-balancing the InfiniBand Links

To prevent the link to be choked, no two
processes should access same remote 108 | o baance T
buffer at the same time '

We use a cyclic pattern to orchestrate the
data-transfer

Process k, in the i th iteration, accesses

the remote buffer of process (k+i)%P Message Size

(P=communicator size) Impact of load-balancing, latency
of a link during SALaR-Inter, 16
nodes

SC’18 Booth Talk, Bayatpour et al.

Summary of Proposed SALaR Designs

e SALaR-XPMEM SALaR

— Efficient Pipeline of Inter-node

Allreduce with Intra-node Reduce

— Uses XPMEM as intra-node zero copy
mechanism

e SALaR-SHMEM

— In case of lack of XPMEM module,
shared memory is being used as the
intra-node mechanism

SC’18 Booth Talk, Bayatpour et al.

Impact of Chunk Size on Allreduce Performance

8MB is optimal among
other chunk sizes

50 ! . . .
128K
A0 |--rmemmmeemeeeee g%ﬂzK -------------------- -
2MBis 2
optimal) %)
S 20 f e gl OV -8
among other < <
chunk sizes I S |
oL m | | Cml 0
1M 2M 4M 8M 16M 32M 64M 128M
Message Size (bytes) Message Size (bytes)
SALaR-XPMEM SALaR-XPMEM (Larger Messages)

Latency of MPI_Allreduce on 224 processes and 28 processes per node on Cluster A

e Selecting the proper chunk size can have a big impact on the
performance

e Different chunk is optimal for each message range

SC’18 Booth Talk, Bayatpour et al.

Adaptive and Dynamic Chunk Size Selection

e The optimal chunk size depends on many factors
— System configuration, job size, message size, PPN
— Static tuning is a costly operation for large messages

e Select the appropriate chunk size for a particular message range
using:

— Comparison to previous calls latency and the performance
model of SALaR

e Performance model will be introduced

SC’18 Booth Talk, Bayatpour et al.

Impact of Heuristic based Designh on Allreduce Performance

30 ‘ ‘ ‘ ‘ 400 ‘ ‘ ‘
e 350 R RRRe MR -
. . . . o Stgtic - 300 ,%\tgggtive """"""
* Adaptive designiscloseandin £=* e o] S
E 77 ””-150 rrrrrrrrrrr
some cases, even has better e 100
7 50 k- -
performance compared to the CTM oM M e M 6AM 126M
Message Size (bytes) Message Size (bytes)
Static version SALaR-SHMEM design on 896 processes on Cluster A
e Effectively removes the hassle o
: : B e ol MR s
of static tuning g ool 5%
5 T 200
% o ABO0 e
200
BO foeee
STTIM oM aM e 07"16M 32M 64M 128M

Message Size (bytes)

Message Size (bytes)

SALaR-XPMEM designs 896 processes on Cluster A

Network Based Computing Laborator SC’18 Booth Talk, Bayatpour et al.

Outline

Introduction
Motivation
Contributions

Proposed Designs
— Design Optimizations

— Modeling

Experimental Results

e Conclusions & Future Work

SC’18 Booth Talk, Bayatpour et al.

Modeling the Proposed SALaR Design

Ttotal—allreduce(l) -
I x maa:{TmteT, Tfintra}(l/I) + I % T:intra—bcast(l/I) —

n—1 G C C'I
JmaziG, O} TR T

——(G"+C)}+ Gl

[x max{(

— 1
In order to simplify the model, 1f we assume that n > 1,
p>1, K =1, and C' ~ 0, then we can have:

Eotal—allreduce(l) -
maz{maz{G,C} + G, (G + C)} +

G'l

Based on LogGP modeling framework

At scale, the total latency does not heavily
dependent of number of processes

Shows the scalability of the desi

n

Symbol | Description
n Number of Nodes
p Number of Processes Per lode
[Size of the input vector
M Size of the transferred vector in each iteration
G Gap per inter-node byte transfer
G’ Gap per intra-node byte transfer
C Computation time per byte
K Number of the inter-node chunks
I Number of the intra-node chunks
10’
N o6
S 21 0
> 10*
= 103
‘U 1 0
10 . Actual-1ppn -x- Actual-28ppn '
10 Predicted-1ppn [| Predicted-28ppn
M 2M 4M 8M 16M 32M 64M

Message Size

Validation of Allreduce model on & nodes on
cluster A. (G =0.0000841, GO =0.0003077,C =
0.0001835)

SC’18 Booth Talk, Bayatpour et al.

Experimental Setup

Hardware Software
I rA I rB MPI
Cluste Cluste DL Frameworks
RI2 Comet Benchmark
40 Dual socket Intel 1944 Dell PowerEdge Microsoft Computational
Xeon series CPUs 14- C6320 two- socket Network Toolkit (CNTK)
core Broadwell servers with 12-core v.2.3.1
processors of 2.40 GHz Intel Xeon processors of
2.50 GHz OosuU
Microbenchmarks
Mellanox MT4115 EDR Mellanox MT4099 FDR V.41 Horovod: Uber
ConnectX-4 HCAs ConnectX-3 HCAs implementation of
Tensorflow
v0.12.1

SC’18 Booth Talk, Bayatpour et al.

Performance Comparison of MPI_Allreduce

. 60 T T T T 800
e Using osu_allreduce ol VT — I 0k
z —SHME —~ 600}
benchmark from OSU 2 wf SALER-SHMEM 2X- Z ol
Microbenchmarks on Cluster & 30p ol | 7 g 400
_ 8 20p e 4 g 300
A with 28 processes per node N I =200
100
e SALaR outperforms Open MPI O—"IM—2M aMm 8M 0—"16M 32M 64M 128M
and MVAPICH2 up to 2X and Message Size (bytes) Message Size (bytes)
448 Processes (Same as in the Paper)
4X
40 T T T T 700 T T T T
* In the latest release of ol B % woese '
2 5l BNRREVEN R g osoo @RV beea)
MVAPICH2, we have . B | X 400 SALaR-SHMEM o BN =
, . = S 300
incorporated some of similar & B _ W -2
-l 0 "B, BB || - o] 200 e
SALaR ideas and enhanced J. B B e 100l
the performance 0 1M 2M 4M 8M 0 16M 32M 64M 128M
Message Size (bytes) Message Size (bytes)

756 Processes (Latest Numbers)

SC’18 Booth Talk, Bayatpour et al.

Performance Comparison of MPI_Allreduce (cont'd)

e Using osu_allreduce
benchmark from OSU
Microbenchmarks on
Cluster B with 24
processes per node

e SALaR outperforms
Open MPIv3.1.2 and
MVAPICH2 v2.3rc2 up to
40% and 5X respectively

140
120
100
80
60
40
20

Latency (ms)

140
120
100
80
60
40
20

Latency (ms)

5X

2,000

1,500 F

~ 1,000

500

1M 2M 4M 8M 0
Message Size (bytes)

16M 32M 64M 128M
Message Size (bytes)

768 Processes on Cluster B

2,000
1,500 |-
" 1,000

500

0

Message Size (bytes)

en MPI 3.1
APICH2 2 02 """""" -
SALaR SHMEM

16M 32M 64M 128M
Message Size (bytes)

1536 Processes on Cluster B

SC’18 Booth Talk, Bayatpour et al.

Impact of SALaR Designs on CNTK

e (CPU-based training AlexNet neural 600 . . .
500 MVAPICH2 2.3rc2
network ILSVRC2012 dataset from 2 100 I
the ImageNet % 200
e SALaR designs perform up to 46% &‘% 200
better than the MVAPICH2 library at 102

112 224 448 896
Number of Processes
CNTK Samples per Second on Cluster A (higher is better)

896 processes

e [ncreasing the scale, the benefits of
the proposed designs also increases

SC’18 Booth Talk, Bayatpour et al.

Impact of SALaR Designs on TensorFlow

e (CPU-based tf _cnn_benchmarks for

distributed tests from TensorFlow 600 ! ! |
_______ MVAPICH2 2.3rc2
Benchmarks (TF) 2 jgg I 2AFER-SHMEM — 35%
— Training AlexNet neural network from % 300
the synthetic datasets é 200
(4%]
e 15% and 35% improvements in the ” 100
number of images per second at 448 and 0 112 224 448 896

896 processes jobs Number of Processes
TensorFlow Images per Second (higher is better)

e |ncreasing the job size, the benefits of
SALaR compared to MVAPICH2 keep
increasing

SC’18 Booth Talk, Bayatpour et al.

Conclusions & Future Work

e Designed multi-leader based collective operations

— Capable of taking advantage of high-end features offered by modern network interconnects

Modeled and analyzed proposed design theoretically
The benefits were evaluated on different architectures

The DPML design is released as a part of MVAPICH2-X 2.3b! Check out:

— http://mvapich.cse.ohio-state.edu/overview/#mv2X

e Studied the interplay between communication pattern of applications and different tag
matching schemes

e Proposes, designed and implemented a dynamic and adaptive tag matching scheme capable to
adapting dynamically to the communication characteristics of applications

e The adaptive approach opens up a new direction to design tag matching schemes for next-
generation exascale systems

Network Based Computing Laborator SC’18 Booth Talk, Bayatpour et al.

Conclusion and Future Work (cont’d)
e Proposed scalable and adaptive Allreduce design

— Capable of taking advantage of high-end features offered by modern network
interconnects and increased parallelism of Multi-/Many-core architectures

e Modeled and analyzed proposed design theoretically

e The benefits were evaluated on different architectures and Deep Learning frameworks
e |mproved the AlexNet training time on CNTK by up to 46%

e Reduced the latency of osu_allreduce by up to 5X at scale

e Inthe future:

— Exploring the SALaR for other collective operations

e The SALaR design will be as a part of MVAPICH2! Check out:
— http://mvapich.cse.ohio-state.edu/

SC’18 Booth Talk, Bayatpour et al.

References

[a] Baidu Allreduce Design: https://github.com/baidu- research/baidu-allreduce
[b] Efficient communications in training large scale neural networks, Zhao et al, Thematic Workshops ACMMM2017
[c] MVAPICH2 2.3rc2

[d] Bandwidth optimal all-reduce algorithms for clusters of workstations, Patarasuk et al, Journal of Parallel and Distributed Comp 09
[e] OpenMPI 1.8.5 and later

[f] Designing Efficient Shared Address Space Reduction Collectives for Multi-/Many-cores, Hashmi et al, IPDPS ‘17

Network Based Computing Laborator SC’18 Booth Talk, Bayatpour et al.

Thank you! Questions?

Network Based Computing Laborator SC’18 Booth Talk, Bayatpour et al.

