
Designing Shared Address Space MPI libraries in the

Many-core Era

Jahanzeb Hashmi

hashmi.29@osu.edu

Network Based Computing Laboratory (NBCL)

The Ohio State University

SC ’18 OSU Booth Talk 2Network Based Computing Laboratory

• Introduction and Motivation

• Background

– Shared-memory Communication

– Kernel-assisted Communication

• Shared Address-space (XPMEM) based Communication

– Quantifying Performance Bottlenecks

– Mitigating the Overheads with Proposed Designs

• Designing XPMEM based Reduction Collectives MPI_Allreduce /

MPI_Reduce

• Performance Evaluation and Analysis

• Concluding Remarks

Outline

SC ’18 OSU Booth Talk 3Network Based Computing Laboratory

Parallel Programming Models Overview

P1 P2 P3

Shared Memory

P1 P2 P3

Memory Memory Memory

P1 P2 P3

Memory Memory Memory

Shared Memory Model

SHMEM, DSM

Distributed Memory Model

MPI (Message Passing Interface)

Partitioned Global Address Space (PGAS)

Global Arrays, UPC, Chapel, X10, CAF, …

• Programming models provide abstract machine models

• Models can be mapped on different types of systems

– e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

• Programming models offer various communication primitives

– Point-to-point (between pair of processes/threads)

– Remote Memory Access (directly access memory of another process)

– Collectives (group communication)

Logical shared memory

SC ’18 OSU Booth Talk 4Network Based Computing Laboratory

SC ’18 OSU Booth Talk 5Network Based Computing Laboratory

• Can we exploit high-concurrency and high-bandwidth offered by

modern architectures?

– better resource utilization high throughput faster communication

performance

– Computation and communication offloading

• Can we design “zero-copy” and contention-free MPI

communication primitives?

– Memory copies are expensive on many-cores

– “Zero-copy” (kernel-assisted) designs are Contention-prone

Broad Challenges in MPI due to Architectural Diversity

SC ’18 OSU Booth Talk 6Network Based Computing Laboratory

Intra-Node Communication in MPI

Shared Memory – SHMEM

Requires two copies
No system call overhead

Better for Small Messages

Kernel-Assisted Copy

System call overhead
Requires single(a.k.a “zero”) copy

Better for Large Messages

MPI Sender

MPI Receiver

Shared MMAP

Region

map

pages

Kernel

address-space

MPI Sender

MPI Receiver

SC ’18 OSU Booth Talk 7Network Based Computing Laboratory

• Introduction and Motivation

• Background

– Shared-memory Communication

– Kernel-assisted Communication

• Shared Address-space (XPMEM) based Communication

– Quantifying Performance Bottlenecks

– Mitigating the Overheads with Proposed Designs

• Designing XPMEM based Reduction Collectives MPI_Allreduce /

MPI_Reduce

• Performance Evaluation and Analysis

• Concluding Remarks

Outline

SC ’18 OSU Booth Talk 8Network Based Computing Laboratory

• XPMEM (https://github.com/hjelmn/xpmem) --- “Cross-partition Memory”

– Mechanisms for a process to “attach” to the virtual memory segment of a remote process

– Consists of a user-space API and a kernel module

• The sender process calls “xpmem_make()” to create a shared segment

– Segment information is then shared with the receiver

• The receiver process calls “xpmem_get()” followed by “xpmem_attach()”

• The receiver process can directly read/write on the remote process’ memory

Direct LD/ST

Sender’s

Address-space

Receiver’s

Address Space

Create Shared

address-space

segment

Sender’s

Address-space

Receiver’s

Address Space

xpmem_make()

xpmem_get()

xpmem_attach()

Shared Address-space based Communication

https://github.com/hjelmn/xpmem

SC ’18 OSU Booth Talk 9Network Based Computing Laboratory

0%

20%

40%

60%

80%

100%

120%

4
K

1
6

K

6
4

K

2
5

6
K

xpmem_detach memcpy xpmem_attach xpmem_get

4
K

1
6

K

6
4

K

2
5

6
K

4
K

1
6

K

6
4

K

2
5

6
K

4
K

1
6

K

6
4

K

2
5

6
K

2-ppn 4-ppn 8-ppn 16-ppn• XPMEM based one-to-all latency

benchmark

– Mimics rooted collectives

• A process needs to attach to remote

process before memcpy

• Up to 65% time spent in XPMEM

registration for short message (4K)

• Increasing PPN increases the cost of

xpmem_get()operation

– Lock contention

– Pronounced at small messages

Relative costs of XPMEM API functions for
different PPN using one-to-all communication
benchmark on a single dual-socket Broadwell
node with 14 cores.

Quantifying the Registration Overheads of XPMEM

SC ’18 OSU Booth Talk 10Network Based Computing Laboratory

How can we alleviate the overheads posed by XPMEM

registration and improve the performance of shared

address-space based communication primitives?

Registration Cache!

SC ’18 OSU Booth Talk 11Network Based Computing Laboratory

Challenges and Contribution Summary

• XPMEM remote registration is costly

• Kernel-assisted zero-copy communication cause contention

with increasing concurrency.

• Lack of true zero-copy reductions in MPI

• Efficient shared address-space based MPI point-to-point

communication

• Contention-free MPI collectives

• Truly zero-copy MPI reduction collectives

SC ’18 OSU Booth Talk 12Network Based Computing Laboratory

Registration Cache for XPMEM based Communication

• Remote pages that are attached are kept in an AVL tree

– One tree per remote peer

– Insertion and lookup in O(log n) time

• First miss, attach remote VMA and cache locally

– Later accesses are found in registration cache

• Lazy memory deregistration principle

– Deregister pages only at finalize or when capacity-

miss occurs (FIFO)

• MPI operations using same buffer do not incur XPMEM

registration overheads

– Performance is only limited by the memcpy

MPI_send(info)

{segid, vaddr, len, lrank}info

sbuf

apid = xpmem_get()

xpmem_attach(apid, info)

cache_insert(vma)

sbuf

rbuf

rbuf

memcpy(rbuf, sbuf, len)

sbuf rbuf

Receiver

Sender

SC ’18 OSU Booth Talk 13Network Based Computing Laboratory

0

100

200

300

400

500

2 4 8 16

La
te

n
cy

 (
u

s)

Concurrent Readers

XPMEM-NoCache
XPMEM-Cache

1

10

100

1000

10000

16K 64K 256K 1M 4M

La
te

n
cy

 (
u

s)

Message Size (bytes)

XPMEM-NoCache
XPMEM-Cache

Impact of Registration Cache on the Performance of XPMEM

based Communication

• Registration cache mitigates the overhead of XPMEM registration of remote memory segments

– At first miss, remote pages are attached and cached

• Look-up in registration cache cost O(log n) time due to AVL tree based design

• Benefits are more pronounced at small to medium message size

4.2X

0

2

4

6

8

10

2 4 8 16

La
te

n
cy

 (
u

s)
Concurrent Readers

XPMEM-NoCache
XPMEM-Cache

Two-process latency
at varying messages

Multi-process latency

at 16KB message

Multi-process latency

at 1MB message

5.7X

5.2X4.3X

SC ’18 OSU Booth Talk 14Network Based Computing Laboratory

1

10

100

1000

10000

2 4 8 16 28

La
te

n
cy

 (
u

s)

Concurrent Readers

CMA Read

XPMEM-Cached Read

Performance of XPMEM and CMA based Communication

• Latency comparison of CMA and XPMEM based “read” on a pair-wise one-to-all communication
pattern at 1MB message size

• CMA based reads suffer from process-level lock-contention inside the kernel

• XPMEM based reads do not have locking overheads and thus show significantly scalable performance

Broadwell (2-socket, 14-core)

1

10

100

1000

10000

100000

2 4 8 16 32 64

La
te

n
cy

 (
u

s)

Concurrent Readers

CMA Read

XPMEM-Cached Read

KNL (68-core, cache-mode)

23X 79X

SC ’18 OSU Booth Talk 15Network Based Computing Laboratory

• Introduction and Motivation

• Background

– Shared-memory Communication

– Kernel-assisted Communication

• Shared Address-space (XPMEM) based Communication

– Quantifying Performance Bottlenecks

– Mitigating the Overheads with Proposed Designs

• Designing XPMEM based Reduction Collectives MPI_Allreduce /

MPI_Reduce

• Performance Evaluation and Analysis

• Concluding Remarks

Outline

SC ’18 OSU Booth Talk 16Network Based Computing Laboratory

• Send/Recv based collectives

– Rely on the implementation of MPI point-to-point primitives

– Handshake overheads for each rendezvous message transfer

• Direct Shared-memory based MPI collectives

– Communication between pairs of processes realized by copying

message to a shared-memory region (copy-in / copy-out)

• Direct Kernel-assisted MPI collective e.g., CMA, LiMIC, KNEM

– Can perform direct “read” or “write” on the user buffers (zero-copy)

– Performance relies on the communication pattern of the collective

• Use two-level designs for inter-node

Current Designs for MPI Collectives

SC ’18 OSU Booth Talk 17Network Based Computing Laboratory

• Existing work on direct collectives that are based on CMA, LiMIC,

KNEM, do not offer zero-copy for reduction implementations

– Remote data is required to be copied to local memory first

– Extra copies detrimental to collectives performance

• Can we design “zero-copy” reduction collectives using shared

address-space paradigm?

– Shared address-space based MPI_Allreduce and MPI_Reduce

designs for MPI

– Multi-leader design for inter-node scaling

Towards Truly Zero-copy Reductions

SC ’18 OSU Booth Talk 18Network Based Computing Laboratory

• Offload reduction computation and communication to peer MPI ranks

– Every Peer has direct “load/store” access to other peer’s buffers

– Multiple leader ranks independently carry-out reductions for intra-and

inter-node phases in parallel

– All peers remain busy and exploit high concurrency of the architecture

• True “zero-copy” design for Allreduce and Reduce

– No copies require during the entire duration of Reduction operation

– Scalable to multiple nodes via multi-leader schemes

• No contention overheads due to proposed registration cache design

– memory copies happen in “user-space”

Shared Address-space (XPMEM-based) Reduction Collectives

SC ’18 OSU Booth Talk 19Network Based Computing Laboratory

• Every process in the communicator exchanges sendbuf / recvbuf memory

segment Information with other processes

– Application buffers are registered with XPMEM and cached in

Registration Cache

• XPMEM based MPI_Allreduce

– Step-1: Parallel Intra-node Partitioned Reduce

– Step-2: Parallel Inter-node Paritioned Allreduce

– Step-3: Parallel Intra-node Paritioned Bcast

• Similar approach for MPI_Reduce as well with minor differences

– Final Bcast step of Allreduce is not performed

– Final Results needs to be delivered to the “root” process

• Use one extra point-to-point Send / Recv if “root” is arbitrary

Shared Address-space based MPI_Allreduce

SC ’18 OSU Booth Talk 20Network Based Computing Laboratory

• Introduction and Motivation

• Background

– Shared-memory Communication

– Kernel-assisted Communication

• Shared Address-space (XPMEM) based Communication

– Quantifying Performance Bottlenecks

– Mitigating the Overheads with Proposed Designs

• Designing XPMEM based Reduction Collectives MPI_Allreduce /

MPI_Reduce

• Performance Evaluation and Analysis

• Concluding Remarks

Outline

SC ’18 OSU Booth Talk 21Network Based Computing Laboratory

Specification Xeon Xeon Phi OpenPOWER

Processor Family Intel Broadwell Knights Landing IBM POWER-8

Processor Model E5 2680v4 KNL 7250 PPC64LE

Clock Speed 2.4 GHz 1.4 GHz 3.4 GHz

No. of Sockets 2 1 2

Cores Per Socket 14 68 10

Threads Per Core 1 4 8

RAM (DDR) 128 GB 96 GB 256 GB

Interconnect IB-EDR (100G) IB-EDR (100G) IB-EDR (100G)

Evaluation Methodology and Cluster Testbeds

• Proposed designs, implemented on MVAPICH2, is called MVPIACH2-XPMEM

• Compared against default MVPAPICH2-2.3, Intel MPI 2017, OpenMPI v3.0.0,

Spectrum MPI v10.1.0.2

• OSU Microbenchmarks, MiniAMR kernel, and AlexNet DNN Training using CNTK

Hardware Specification of Cluster Testbeds

SC ’18 OSU Booth Talk 22Network Based Computing Laboratory

Overview of the MVAPICH2 Project
• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 2900 organizations in 86 countries

– More than 469,000 (> 0.46 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (Nov ‘17 ranking)

• 1st, 10,649,600-core (Sunway TaihuLight) at National Supercomputing Center in Wuxi, China

• 9th, 556,104 cores (Oakforest-PACS) in Japan

• 12th, 368,928-core (Stampede2) at TACC

• 17th, 241,108-core (Pleiades) at NASA

• 48th, 76,032-core (Tsubame 2.5) at Tokyo Institute of Technology

– Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade

http://mvapich.cse.ohio-state.edu/

SC ’18 OSU Booth Talk 23Network Based Computing Laboratory

Micro-benchmark Evaluation on Broadwell Cluster

OSU_Allreduce

• 16 nodes, 256 processes of dual-socket Broadwell system

• Up to 1.8X improvement for 4MB AllReduce and 4X improvement for 4MB Reduce

OSU_Reduce

0

100

200

300

400

16K 32K 64K 128K 256K

MVAPICH2-2.3rc1
Intel MPI 2017
MVAPICH2-XPMEM

0

5000

10000

15000

512K 1M 2M 4M

MVAPICH2-2.3rc1

Intel MPI 2017

MVAPICH2-XPMEM

0

100

200

300

16K 32K 64K 128K 256K

MVAPICH2-2.3rc1
Intel MPI 2017
MVAPICH2-XPMEM

0

5000

10000

15000

512K 1M 2M 4M

MVAPICH2-2.3rc1
Intel MPI 2017
MVAPICH2-XPMEM

L
a

te
n

c
y
 (

u
s
)

L
a

te
n

c
y
 (

u
s
)

35% 1.8X

2.4X

4X

SC ’18 OSU Booth Talk 24Network Based Computing Laboratory

Micro-benchmark Evaluation on KNL Cluster

1

100

10000

1000000

64K 128K 256K 512K 1M 2M 4M

La
te

n
cy

 (
u

s)

Message Size

MVAPICH2-2.3rc1

Intel MPI 2017

MVAPICH2-XPMEM

OSU_Allreduce (KNL 256 procs)

• 4 x KNL 7250 in cache-mode with XPMEM based reduction collectives

• 6X and 14X improvement over Intel MPI 2017 on XPMEM based Allreduce and Reduce

respectively, on 4MB message size

6X

1

100

10000

1000000

64K 128K 256K 512K 1M 2M 4M

Message Size

MVAPICH2-2.3rc1

Intel MPI 2017

MVAPICH2-XPMEM

OSU_Reduce (KNL 256 procs)

14X

SC ’18 OSU Booth Talk 25Network Based Computing Laboratory

Micro-benchmark Evaluation on OpenPOWER Cluster

OSU_Allreduce

• Two POWER8 dual-socket nodes each with 20 ppn

• Up to 2X improvement for Allreduce and 3X improvement for Reduce at 4MB message

OSU_Reduce

0

100

200

4K 8K 16K 32K 64K

MVAPICH2-2.3rc1

SpectrumMPI-10.1.0

OpenMPI-3.0.0

MVAPICH2-XPMEM

0

5000

128K 256K 512K 1M 2M

MVAPICH2-2.3rc1

SpectrumMPI-10.1.0

OpenMPI-3.0.0

MVAPICH2-XPMEM

0

1000

4K 8K 16K 32K 64K 128K 256K

MVAPICH2-2.3rc1
SpectrumMPI-10.1.0
OpenMPI-3.0.0
MVAPICH2-XPMEM

0

50000

512K 1M 2M 4M 8M 16M

MVAPICH2-2.3rc1
SpectrumMPI-10.1.0
OpenMPI-3.0.0
MVAPICH2-XPMEM

L
a

te
n

c
y
 (

u
s
)

L
a

te
n

c
y
 (

u
s
)

3.7X
2X

5X
3X

SC ’18 OSU Booth Talk 26Network Based Computing Laboratory

Application Performance of MPI_Allreduce on Broadwell

MiniAMR (dual-socket, ppn=16)

• Up to 20% benefits over IMPI for CNTK DNN training using AllReduce

• Up to 27% benefits over IMPI and up to 15% improvement over MVAPICH2

for MiniAMR application kernel

0

200

400

600

800

28 56 112 224

Ex
ec

u
ti

o
n

 T
im

e
(s

)

No. of Processes

Intel MPI
MVAPICH2
MVAPICH2-XPMEM

CNTK AlexNet Training

(B.S=default, iteration=50, ppn=28)

0

20

40

60

80

16 32 64 128 256

Ex
ec

u
ti

o
n

 T
im

e
(s

)

No. of Processes

Intel MPI

MVAPICH2

MVAPICH2-XPMEM
20%

9%

27%

15%

SC ’18 OSU Booth Talk 27Network Based Computing Laboratory

0

20

40

60

10 20 40 60

Ex
ec

u
ti

o
n

 T
im

e
(s

)

No. of Processes

MVAPICH-2.3rc1
MVAPICH2-XPMEM

miniAMR using XPMEM-based AllReduce on OpenPOWER Cluster

• miniAMR application execution time comparing MVAPICH2-2.3rc1 and optimized
All-Reduce design

– MiniAMR application for weak-scaling workload on up to three POWER8
nodes.

– Up to 45% improvement over MVAPICH2-2.3rc1 in mesh-refinement time

45%
41%

36%

42%

OpenPOWER (weak-scaling, 3 nodes, ppn=20)

SC ’18 OSU Booth Talk 28Network Based Computing Laboratory

• Introduction and Motivation

• Background

– Shared-memory Communication

– Kernel-assisted Communication

• Shared Address-space (XPMEM) based Communication

– Quantifying Performance Bottlenecks

– Mitigating the Overheads with Proposed Designs

• Designing XPMEM based Reduction Collectives MPI_Allreduce /

MPI_Reduce

• Performance Evaluation and Analysis

• Concluding Remarks

Outline

SC ’18 OSU Booth Talk 29Network Based Computing Laboratory

• Characterized the performance trade-offs involved in designing Shared address-space

based communication in MPI

– Registration cache based schemes to overcome performance bottlenecks

• Design and Implementation of “true zero-copy” reduction collectives in MPI

– Demonstrated the performance benefits of new MPI_Allreduce and MPI_Reduce

designs on Xoen, Xeon Phi, and OpenPOWER architecture

• Demonstrated the efficacy of the proposed solutions at micro-benchmarks as well as wide

range of applications

– AMR kernel, Neural Network Training, micro-benchmark

– Significant speedup over existing designs in prevalent MPI libraries such as MVPAICH2,

OpenMPI, IntelMPI, and SpectrumMPI

• We plan to expand to designs to other collectives and evaluate other architectures e.g., ARM

Concluding Remarks

SC ’18 OSU Booth Talk 30Network Based Computing Laboratory

Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

hashmi.29@osu.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
mailto:Hashmi.29osu.edu@

