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Drivers of Modern HPC Cluster Architectures

• Multi-core/many-core technologies

• Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)

• Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD

• Accelerators (NVIDIA GPGPUs and Intel Xeon Phi)

• Available on HPC Clouds, e.g., Amazon EC2, NSF Chameleon, Microsoft Azure, etc.

Accelerators / Coprocessors 
high compute density, high 

performance/watt
>1 TFlop DP on a chip 

High Performance Interconnects -
InfiniBand

<1usec latency, 100Gbps Bandwidth>Multi-core Processors SSD, NVMe-SSD, NVRAM

Tianhe – 2 TitanK - ComputerSunway TaihuLight
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Overview of the MVAPICH2 Project
• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Started in 2001, First version available in 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs  (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 2,825 organizations in 85 countries

– More than 433,000 (> 0.4 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (June ‘17 ranking)
• 1st, 10,649,600-core (Sunway TaihuLight) at National Supercomputing Center in Wuxi, China 

• 15th, 241,108-core (Pleiades) at NASA 

• 20th, 462,462-core (Stampede) at TACC 

• 44th, 74,520-core (Tsubame 2.5) at Tokyo Institute of Technology

– Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade

– System-X from Virginia Tech (3rd in Nov 2003, 2,200 processors, 12.25 TFlops) ->

– Sunway TaihuLight (1st in Jun’17, 10M cores, 100 PFlops)

http://mvapich.cse.ohio-state.edu/
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MVAPICH2 Architecture

High Performance Parallel Programming Models

Message Passing Interface
(MPI)

PGAS
(UPC, OpenSHMEM, CAF, UPC++)

Hybrid --- MPI + X
(MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime
Diverse APIs and Mechanisms

Point-to-
point 

Primitives

Collectives 
Algorithms

Energy-
Awareness

Remote 
Memory 
Access

I/O and
File Systems

Fault
Tolerance

Virtualization Active 
Messages

Job Startup
Introspection 

& Analysis

Support for Modern Networking Technology
(InfiniBand, iWARP, RoCE, OmniPath)

Support for Modern Multi-/Many-core Architectures
(Intel-Xeon, OpenPower, Xeon-Phi (MIC, KNL*), NVIDIA GPGPU)

Transport Protocols Modern Features

RC XRC UD DC UMR ODP* SR-
IOV

Multi 
Rail

Transport Mechanisms
Shared 

Memory CMA IVSHMEM

Modern Features

MCDRAM* NVLink* CAPI*

* Upcoming
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MVAPICH2 Software Family 
High-Performance Parallel Programming Libraries

MVAPICH2 Support for InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE

MVAPICH2-X Advanced MPI features, OSU INAM, PGAS (OpenSHMEM, UPC, UPC++, and CAF), and 
MPI+PGAS programming models with unified communication runtime

MVAPICH2-GDR Optimized MPI for clusters with NVIDIA GPUs

MVAPICH2-Virt High-performance and scalable MPI for hypervisor and container based HPC cloud

MVAPICH2-EA Energy aware and High-performance MPI

MVAPICH2-MIC Optimized MPI for clusters with Intel KNC

Microbenchmarks

OMB Microbenchmarks suite to evaluate MPI and PGAS (OpenSHMEM, UPC, and UPC++) 
libraries for CPUs and GPUs

Tools

OSU INAM Network monitoring, profiling, and analysis for clusters with MPI and scheduler 
integration

OEMT Utility to measure the energy consumption of MPI applications
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• MVAPICH2-GPU with GPUDirect-RDMA (GDR) 
• What’s new with MVAPICH2-GDR

• Maximal overlap in MPI Datatype Processing
• Efficient Support for Managed Memory
• Support for OpenPower and NVLink 
• Initial support for GPUDirect Async feature

• Streaming Support with IB Multicast and GDR 
• High-Performance Deep Learning with MVAPICH2-GDR
• Conclusions

Outline



NRL (SC ‘17) 8Network Based Computing Laboratory

CPU CPU
QPI

G
PU

PC
Ie

G
PU

G
PU

CPU

G
PU

IB

Node 0 Node 1
1. Intra-GPU
2. Intra-Socket GPU-GPU
3. Inter-Socket GPU-GPU
4. Inter-Node GPU-GPU
5. Intra-Socket GPU-Host

7. Inter-Node GPU-Host
6. Inter-Socket GPU-Host

Memory buffers

8. Inter-Node GPU-GPU with IB adapter  on remote socket
and more . . .

• For each path different schemes: Shared_mem, IPC, GPUDirect RDMA, pipeline …
• Critical for runtimes to optimize data movement while hiding the complexity

• Connected as PCIe devices – Flexibility but Complexity

Optimizing MPI Data Movement on GPU Clusters
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At Sender:

At Receiver:
MPI_Recv(r_devbuf, size, …);

inside
MVAPICH2

• Standard MPI interfaces used for unified data movement

• Takes advantage of Unified Virtual Addressing (>= CUDA 4.0) 

• Overlaps data movement from GPU with RDMA transfers 

High Performance and High Productivity

MPI_Send(s_devbuf, size, …);

GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GPU 
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CUDA-Aware MPI: MVAPICH2-GDR 1.8-2.3 Releases
• Support for MPI communication from NVIDIA GPU device memory
• High performance RDMA-based inter-node point-to-point 

communication (GPU-GPU, GPU-Host and Host-GPU)
• High performance intra-node point-to-point communication for multi-

GPU adapters/node (GPU-GPU, GPU-Host and Host-GPU)
• Taking advantage of CUDA IPC (available since CUDA 4.1) in intra-node 

communication for multiple GPU adapters/node
• Optimized and tuned collectives for GPU device buffers
• MPI datatype support for point-to-point and collective communication 

from GPU device buffers
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MVAPICH2-GDR-2.3a
Intel Haswell  (E5-2687W @ 3.10 GHz) node - 20 cores

NVIDIA Volta V100 GPU
Mellanox Connect-X4 EDR HCA

CUDA 9.0
Mellanox OFED 4.0 with GPU-Direct-RDMA

10x

9x

Optimized MVAPICH2-GDR Design 

1.88us
11X
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• Platform: Wilkes (Intel Ivy Bridge + NVIDIA Tesla K20c + Mellanox Connect-IB)
• HoomdBlue Version 1.0.5 

• GDRCOPY enabled: MV2_USE_CUDA=1 MV2_IBA_HCA=mlx5_0 MV2_IBA_EAGER_THRESHOLD=32768 
MV2_VBUF_TOTAL_SIZE=32768 MV2_USE_GPUDIRECT_LOOPBACK_LIMIT=32768 
MV2_USE_GPUDIRECT_GDRCOPY=1 MV2_USE_GPUDIRECT_GDRCOPY_LIMIT=16384

Application-Level Evaluation (HOOMD-blue)
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Application-Level Evaluation (Cosmo) and Weather Forecasting in Switzerland
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• 2X improvement on 32 GPUs nodes
• 30% improvement on 96 GPU nodes (8 GPUs/node) 

C. Chu, K. Hamidouche, A. Venkatesh, D. Banerjee , H. Subramoni, and D. K. Panda, Exploiting Maximal Overlap for Non-Contiguous Data 
Movement Processing on Modern GPU-enabled Systems, IPDPS’16

On-going collaboration with CSCS and MeteoSwiss (Switzerland) in co-designing MV2-GDR and Cosmo Application

Cosmo model: http://www2.cosmo-model.org/content
/tasks/operational/meteoSwiss/

mailto:panda@cse.ohio-state.edu
http://www2.cosmo-model.org/content
mailto:panda@cse.ohio-state.edu
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• MVAPICH2-GPU with GPUDirect-RDMA (GDR) 
• What’s new with MVAPICH2-GDR

• Maximal overlap in MPI Datatype Processing
• Efficient Support for Managed Memory
• Support for OpenPower and NVLink 
• Initial support for GPUDirect Async feature

• Streaming Support with IB Multicast and GDR 
• High-Performance Deep Learning with MVAPICH2-GDR
• Conclusions

Outline
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• Multi-dimensional data
• Row based organization
• Contiguous on one dimension 
• Non-contiguous on other dimensions

• Halo data exchange
• Duplicate the boundary
• Exchange the boundary in each 

iteration

Halo data exchange

Non-contiguous Data Exchange
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MPI Datatype Processing (Computation Optimization )

• Comprehensive support 
• Targeted kernels  for regular datatypes  - vector, subarray, indexed_block

• Generic kernels for all other irregular datatypes

• Separate non-blocking stream for kernels launched by MPI library 
• Avoids stream conflicts with application kernels  

• Flexible set of parameters for users to tune kernels
• Vector 

• MV2_CUDA_KERNEL_VECTOR_TIDBLK_SIZE

• MV2_CUDA_KERNEL_VECTOR_YSIZE

• Subarray 
• MV2_CUDA_KERNEL_SUBARR_TIDBLK_SIZE 
• MV2_CUDA_KERNEL_SUBARR_XDIM
• MV2_CUDA_KERNEL_SUBARR_YDIM 
• MV2_CUDA_KERNEL_SUBARR_ZDIM 

• Indexed_block

• MV2_CUDA_KERNEL_IDXBLK_XDIM
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MPI Datatype Processing (Communication Optimization )

Waste of computing resources on CPU and GPUCommon Scenario

*A, B…contain non-contiguous
MPI Datatype

MPI_Isend (A,.. Datatype,…)
MPI_Isend (B,.. Datatype,…)
MPI_Isend (C,.. Datatype,…)
MPI_Isend (D,.. Datatype,…)
…

MPI_Waitall (…);
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Enhanced Support for GPU Managed Memory 
● CUDA Managed => no memory pin down 

● No IPC support for intranode communication 
● No GDR support for Internode communication

● Significant productivity benefits due to abstraction of explicit 
allocation and cudaMemcpy()

● Initial and basic support in MVAPICH2-GDR 
● For both intra- and inter-nodes use “pipeline through” 

host memory 
● Enhance intranode managed memory to use IPC

● Double buffering pair-wise IPC-based scheme 
● Brings IPC performance to Managed memory 
● High performance and high productivity
● 2.5 X improvement in bandwidth

● OMB extended to evaluate the performance of point-to-point 
and collective communications using managed buffers 

● Available since MVAPICH2-GDR 2.2 0
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• MVAPICH2-GPU with GPUDirect-RDMA (GDR) 
• What’s new with MVAPICH2-GDR

• Maximal overlap in MPI Datatype Processing
• Efficient Support for Managed Memory
• Support for OpenPower and NVLink 
• Initial support for GPUDirect Async feature

• Streaming Support with IB Multicast and GDR 
• High-Performance Deep Learning with MVAPICH2-GDR
• Conclusions

Outline
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Overview of GPUDirect aSync (GDS) Feature: 
Current MPI+CUDA interaction 

CUDA_Kernel_a<<<>>>(A…., stream1)
cudaStreamSynchronize(stream1)
MPI_ISend (A,…., req1)
MPI_Wait (req1)
CUDA_Kernel_b<<<>>>(B…., stream1)

GPU CPU HCA

100% CPU control 
• Limits the throughput of a GPU 
• Limits the asynchronous progress 
• Wastes CPU cycles 
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MVAPICH2-GDS: Decouple GPU Control Flow from CPU

CUDA_Kernel_a<<<>>>(A…., stream1)
MPI_ISend (A,…., req1, stream1)
MPI_Wait (req1, stream1) (non-blocking from CPU)
CUDA_Kernel_b<<<>>>(B…., stream1)

GPU CPU HCA

CPU offloads the compute, communication and 
synchronization tasks to GPU  
• CPU is out of the critical path 
• Tight interaction between GPU and HCA 
• Hides the overhead of kernel launch  
• Requires MPI semantics extensions 

• All operations are asynchronous from CPU 
• Extends MPI semantics with Stream-based semantics 

Kernel Launch 
overhead can 
be hidden
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Latency oriented: Kernel+Send and Recv+Kernel

MVAPICH2-GDS: Preliminary Results 
Overlap with host computation/communication 

• Latency Oriented: Able to hide the kernel launch overhead
– 8-15% improvement compared to default behavior 

• Overlap: Asynchronously to offload queue the Communication and computation tasks
– 89% overlap with host computation at 128-Byte message size 

Intel Sandy Bridge, NVIDIA Tesla K40c and Mellanox FDR HCA
CUDA 8.0, OFED 3.4, Each kernel is ~50us

Will be available in a public release soon 
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• MVAPICH2-GPU with GPUDirect-RDMA (GDR) 
• What’s new with MVAPICH2-GDR

• Maximal overlap in MPI Datatype Processing
• Efficient Support for Managed Memory
• Support for OpenPower and NVLink 
• Initial support for GPUDirect Async feature

• Streaming Support with IB Multicast and GDR 
• High-Performance Deep Learning with MVAPICH2-GDR
• Conclusions

Outline
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• Examples - surveillance, habitat 
monitoring, proton computed 
tomography (pCT), etc..

• Require efficient transport of data 
from/to distributed sources/sinks

• Sensitive to latency and throughput 
metrics 

• Require HPC resources to efficiently carry 
out compute-intensive tasks

Streaming Applications

Src: http://www.symmetrymagazine.org/article/april-2012/proton-beam-on
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• Streaming applications 
on HPC systems
1. Communication (MPI)

• Broadcast-type operations

2. Computation (CUDA)
• Multiple GPU nodes as 

workers

Motivation
Data Source

SenderHPC resources for 
real-time analytics

Real-time streaming

Worker
CPU
GPU

GPU

Worker
CPU
GPU

GPU

Worker
CPU
GPU

GPU

Worker
CPU
GPU

GPU

Worker
CPU
GPU

GPU

Data streaming-like broadcast 
operations
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IB Multicast Example
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• Can we design a GPU broadcast and allreduce mechanism that can deliver low 
latency and high throughput for streaming applications?

• Can we combine GPUDirect RDMA (GDR) and IB-MCAST features to
• Achieve the best performance and scalability
• Free-up the Host-Device PCIe bandwidth for application needs 

• Can such design be extended to support heterogeneous configuration (host-to-
device)?

• Can we design an efficient MCAST based broadcast for multi-GPU systems?
• Can we design an efficient reliability support on top of the UD-based MCAST 

broadcast?
• Can we design an efficient MCAST based allreduce for GPU systems?
• How can we demonstrate such benefits at benchmark and applications level?

Problem Statement
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• Handling Efficient and Reliable Broadcast on Multi-GPU Clusters
• C.-H. Chu, K. Hamidouche, H. Subramoni, A. Venkatesh, B. Elton, and D. K. Panda. “Designing High

Performance Heterogeneous Broadcast for Streaming Applications on GPU Clusters, “ SBAC-PAD’16,
Oct 2016.

• C.-H. Chu, K. Hamidouche, H. Subramoni, A. Venkatesh, B. Elton, and D. K. Panda. “Efficient Reliability
Support for Hardware Multicast-based Broadcast in GPU-enabled Streaming Applications,“ COMHPC
2016 (SC Workshop), Nov 2016.

• Optimizing Broadcast for GPU-based Deep Learning
• Ching-Hsiang Chu, Xiaoyi Lu, Ammar A. Awan, Hari Subramoni, Jahanzeb Hashmi, Bracy Elton, and

Dhabaleswar K. Panda, "Efficient and Scalable Multi-Source Streaming Broadcast on GPU Clusters for
Deep Learning , " ICPP’17.

• High-Performance Broadcast with IB-MCAST and GDR
• Ching-Hsiang Chu, Xiaoyi Lu, Ammar A. Awan, Hari Subramoni, Bracy Elton, and Dhabaleswar K. Panda.,

"Exploiting Hardware Multicast and GPUDirect RDMA for Efficient Broadcast , ” submitted to IEEE TPDS.
(Under review)

Related Publications
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• Combining MCAST+GDR hardware features for 
heterogeneous configurations: 

– Source on the Host and destination on Device 

– SL design: Scatter at destination
• Source: Data and Control on Host 

• Destinations: Data on Device and Control on Host 

– Combines IB MCAST and GDR features at receivers

– CUDA IPC-based topology-aware intra-node broadcast

– Minimize use of PCIe resources (Maximizing availability of PCIe 
Host-Device Resources)

• Available in MVAPICH2-GDR 2.3a

SL-based Design for Heterogeneous Configuration (Host-Device)

Node N
IB 

HCA

IB 
HCA

CPU

GPU

Source

IB 
Switch

GPU

CPU

Node 1

Multicast steps

C
Dat

a

C

IB SL step

Dat
a

IB 
HCA

GPU

CPU

Dat
a

C

C.-H. Chu, K. Hamidouche, H. Subramoni, A. Venkatesh, B. Elton, and D. K. Panda. 
“Designing High Performance Heterogeneous Broadcast for Streaming Applications on GPU Clusters, “ SBAC-PAD’16, Oct 2016. 
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• Inter-node experiments @ Wilkes cluster, 32 GPUs, 1 GPU/node
– 1K byte messages 

Scalability Evaluation of the Proposed Design
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C.-H. Chu, K. Hamidouche, H. Subramoni, A. Venkatesh, B. Elton, and D. K. Panda. 
“Designing High Performance Heterogeneous Broadcast for Streaming Applications on GPU Clusters, “ SBAC-PAD’16, Oct 2016. 

• Maintain good Scalability while yielding up to 64% reduction of latency

64%
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• Mimic the behavior of streaming applications @ CSCS cluster, 88 GPUs, 8 
NVIDIA K80 GPUs per node

– Broadcast operations overlapped with application level Host-Device transfers 

Benefits of the Availability of Host-Device PCI Resources
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C.-H. Chu, K. Hamidouche, H. Subramoni, A. Venkatesh, B. Elton, and D. K. Panda. 
“Designing High Performance Heterogeneous Broadcast for Streaming Applications on GPU Clusters, “ SBAC-PAD’16, Oct 2016. 

• Maintain near-peak throughput over all message sizes
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• MVAPICH2-GPU with GPUDirect-RDMA (GDR) 
• What’s new with MVAPICH2-GDR

• Maximal overlap in MPI Datatype Processing
• Efficient Support for Managed Memory
• Support for OpenPower and NVLink 
• Initial support for GPUDirect Async feature

• Streaming Support with IB Multicast and GDR 
• High-Performance Deep Learning with MVAPICH2-GDR
• Conclusions

Outline
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• NCCL 1.x had some limitations
– Only worked for a single node; no scale-out on multiple nodes

– Degradation across IOH (socket) for scale-up (within a node)

• We propose optimized MPI_Bcast design that exploits NCCL [1]

– Communication of very large GPU buffers

– Scale-out on large number of dense multi-GPU nodes

Efficient Broadcast: MVAPICH2-GDR and NCCL

1. A. A. Awan, K. Hamidouche, A. Venkatesh, and D. K. Panda, Efficient Large Message Broadcast using NCCL and CUDA-Aware MPI for Deep 
Learning. In Proceedings of the 23rd European MPI Users' Group Meeting (EuroMPI 2016). [Best Paper Nominee]

2. A. A. Awan, C-H. Chu, H. Subramoni, and D. K. Panda. Optimized Broadcast for Deep Learning Workloads on Dense-GPU InfiniBand Clusters: 
MPI or NCCL?, arXiv ’17 (https://arxiv.org/abs/1707.09414)

• Hierarchical Communication that efficiently exploits:
– CUDA-Aware MPI_Bcast in MV2-GDR 

– NCCL Broadcast for intra-node transfers

• Can pure MPI-level designs be done that achieve similar 
or better performance than NCCL-based approach? [2]

VGG Training with CNTK

https://arxiv.org/abs/1707.09414)
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• Initial Evaluation shows promising performance gains for MVAPICH2-
GDR 2.3a compared to Baidu-allreduce

MVAPICH2-GDR vs. Baidu-allreduce

Available in MVAPICH2-GDR 2.3a!
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• Optimizing MCAST+GDR Broadcast for deep 
learning: 

– Source and destination buffers are on GPU Device 
• Typically very large messages (>1MB)

– Pipelining data from Device to Host
• Avoid GDR read limit 

• Leverage high-performance SL design

– Combines IB MCAST and GDR features 

– Minimize use of PCIe resources on the receiver side
• Maximizing availability of PCIe Host-Device Resources

– Available MVAPICH2-GDR 2.3a!

Exploiting GDR+IB-Mcast Design for Deep Learning Applications
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Ching-Hsiang Chu, Xiaoyi Lu, Ammar A. Awan, Hari Subramoni, Jahanzeb Hashmi, Bracy Elton, and
Dhabaleswar K. Panda, "Efficient and Scalable Multi-Source Streaming Broadcast on GPU Clusters for Deep
Learning , ” ICPP’17.
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• @ RI2 cluster, 16 GPUs, 1 GPU/node
– Microsoft Cognitive Toolkit (CNTK) [https://github.com/Microsoft/CNTK]

Application Evaluation: Deep Learning Frameworks
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C.-H. Chu, X. Lu, A. A. Awan, H. Subramoni, J. Hashmi, B. Elton, and D. K. Panda, Efficient and Scalable Multi-Source Streaming Broadcast on GPU Clusters for Deep Learning, ICPP’17. 

• Reduces up to 24% and 15% of latency for AlexNet and VGG models
• Higher improvement can be observed for larger system sizes
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High-Performance Deep Learning (HiDL) with MVAPICH2-GDR

• Caffe : A flexible and layered Deep Learning 
framework.

• Benefits and Weaknesses
– Multi-GPU Training within a single node

– Performance degradation for GPUs across different 
sockets 

– No Scale-out available

• OSU-Caffe: MPI-based Parallel Training 
– Enable Scale-up (within a node) and Scale-out 

(across multi-GPU nodes)

– Scale-out on 64 GPUs for training CIFAR-10 network 
on CIFAR-10 dataset

– Scale-out on 128 GPUs for training GoogLeNet 
network on ImageNet dataset
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OSU-Caffe publicly available from

http://hidl.cse.ohio-state.edu/

Invalid use case

http://hidl.cse.ohio-state.edu/
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• MVAPICH2-GPU with GPUDirect-RDMA (GDR) 
• What’s new with MVAPICH2-GDR

• Maximal overlap in MPI Datatype Processing
• Efficient Support for Managed Memory
• Support for OpenPower and NVLink 
• Initial support for GPUDirect Async feature

• Streaming Support with IB Multicast and GDR 
• High-Performance Deep Learning with MVAPICH2-GDR
• Conclusions

Outline
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• MVAPICH2 optimizes MPI communication on InfiniBand clusters with GPUs 

• Provides optimized designs for point-to-point two-sided and one-sided 
communication, datatype processing and collective operations 

• Takes advantage of CUDA features like IPC and GPUDirect RDMA families 

• New designs help to get good performance for streaming and deep learning 
applications

Conclusions
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panda@cse.ohio-state.edu

Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The MVAPICH2 Project
http://mvapich.cse.ohio-state.edu/

mailto:panda@cse.ohio-state.edu
http://nowlab.cse.ohio-state.edu/
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