

Exploiting Latest Networking and Accelerator Technologies for MPI, Streaming, and Deep Learning: An MVAPICH2-Based Approach

Talk at NRL booth (SC '17)

by

Dhabaleswar K. (DK) Panda

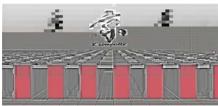
The Ohio State University

E-mail: panda@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~panda

Drivers of Modern HPC Cluster Architectures

High Performance Interconnects -InfiniBand <1usec latency, 100Gbps Bandwidth>


Multi-core Processors

Multi-core/many-core technologies

- Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)
- Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD
- Accelerators (NVIDIA GPGPUs and Intel Xeon Phi)
- Available on HPC Clouds, e.g., Amazon EC2, NSF Chameleon, Microsoft Azure, etc.

Sunway TaihuLight
Network Based Computing Laboratory

K - Computer

Tianhe – 2

NRL (SC '17)

Accelerators / Coprocessors

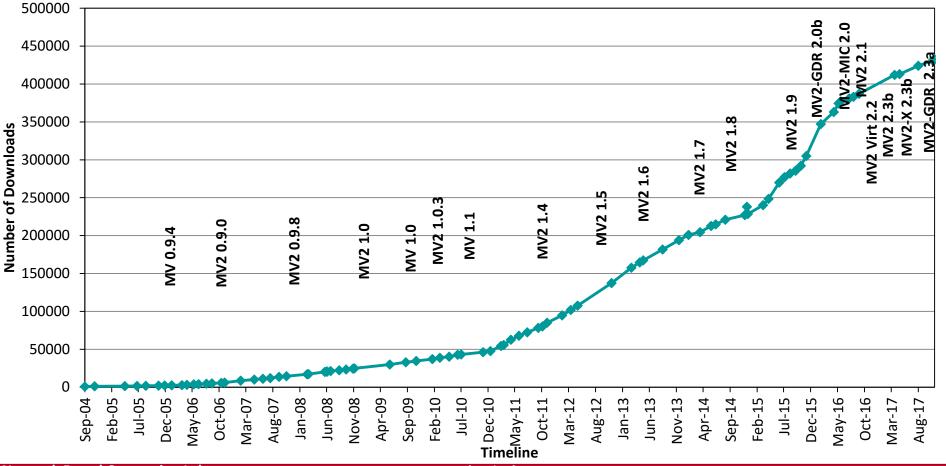
high compute density, high

performance/watt

>1 TFlop DP on a chip

SSD, NVMe-SSD, NVRAM

Titan

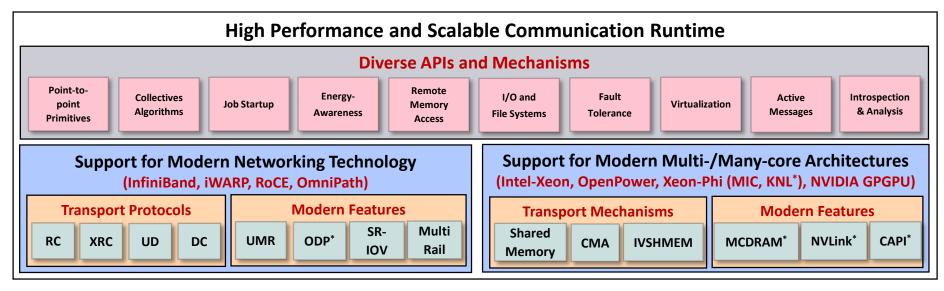

Overview of the MVAPICH2 Project

- High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)
 - MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Started in 2001, First version available in 2002
 - MVAPICH2-X (MPI + PGAS), Available since 2011
 - Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
 - Support for Virtualization (MVAPICH2-Virt), Available since 2015
 - Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
 - Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015
 - Used by more than 2,825 organizations in 85 countries
 - More than 433,000 (> 0.4 million) downloads from the OSU site directly
 - Empowering many TOP500 clusters (June '17 ranking)
 - 1st, 10,649,600-core (Sunway TaihuLight) at National Supercomputing Center in Wuxi, China
 - 15th, 241,108-core (Pleiades) at NASA
 - 20th, 462,462-core (Stampede) at TACC
 - 44th, 74,520-core (Tsubame 2.5) at Tokyo Institute of Technology
 - Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)
 - <u>http://mvapich.cse.ohio-state.edu</u>
- Empowering Top500 systems for over a decade
 - System-X from Virginia Tech (3rd in Nov 2003, 2,200 processors, 12.25 TFlops) ->
 - Sunway TaihuLight (1st in Jun'17, 10M cores, 100 PFlops)

NRL (SC '17)

10 Years & Going Strong!

MVAPICH2 Release Timeline and Downloads



Network Based Computing Laboratory

NRL (SC '17)

MVAPICH2 Architecture

High P	High Performance Parallel Programming Models		
Message Passing Interface	PGAS	Hybrid MPI + X	
(MPI)	(UPC, OpenSHMEM, CAF, UPC++)	(MPI + PGAS + OpenMP/Cilk)	

Upcoming

Network Based Computing Laboratory

NRL (SC '17)

MVAPICH2 Software Family

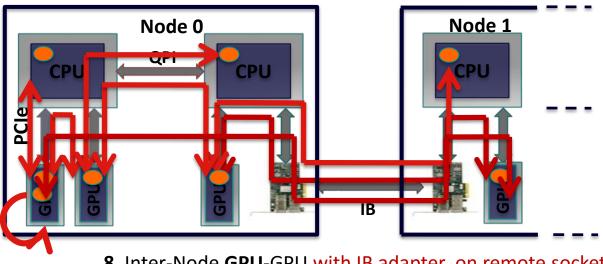
ligh-Performance Parallel Programming Libraries	
MVAPICH2	Support for InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE
MVAPICH2-X	Advanced MPI features, OSU INAM, PGAS (OpenSHMEM, UPC, UPC++, and CAF), and MPI+PGAS programming models with unified communication runtime
MVAPICH2-GDR	Optimized MPI for clusters with NVIDIA GPUs
MVAPICH2-Virt	High-performance and scalable MPI for hypervisor and container based HPC cloud
MVAPICH2-EA	Energy aware and High-performance MPI
	Optimized MDI for ductors with Intel KNIC

MVAPICH2-MIC Optimized MPI for clusters with Intel KNC

Microbenchmarks

0

MB	Microbenchmarks suite to evaluate MPI and PGAS (OpenSHMEM, UPC, and UPC++)
	libraries for CPUs and GPUs


Tools **OSU INAM** Network monitoring, profiling, and analysis for clusters with MPI and scheduler integration Utility to measure the energy consumption of MPI applications **OEMT**

Outline

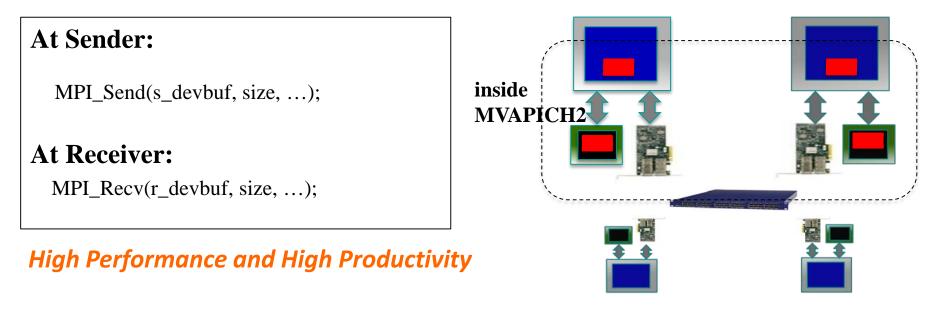
- MVAPICH2-GPU with GPUDirect-RDMA (GDR)
- What's new with MVAPICH2-GDR
 - Maximal overlap in MPI Datatype Processing
 - Efficient Support for Managed Memory
 - Support for OpenPower and NVLink
 - Initial support for GPUDirect Async feature
- Streaming Support with IB Multicast and GDR
- High-Performance Deep Learning with MVAPICH2-GDR
- Conclusions

Optimizing MPI Data Movement on GPU Clusters

Connected as PCIe devices – Flexibility but Complexity

Memory buffers

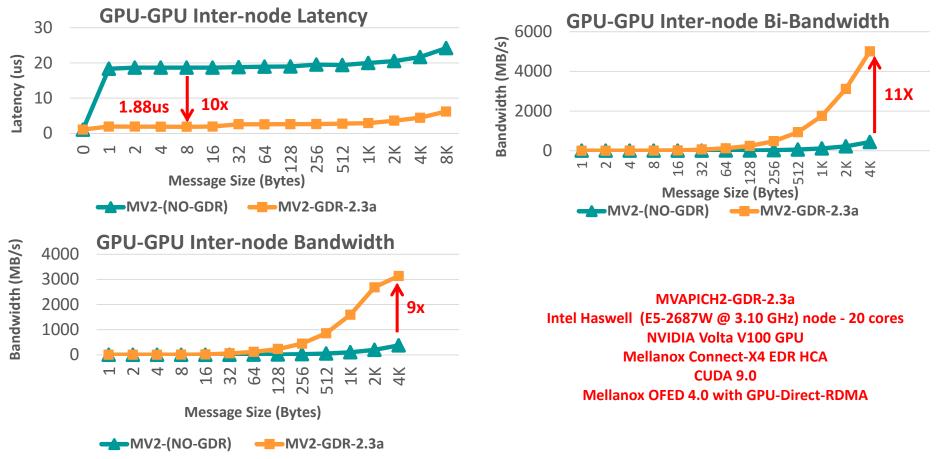
- 1. Intra-GPU
- Intra-Socket GPU-GPU
- 3. Inter-Socket GPU-GPU
- **4**. Inter-Node **GPU**-GPU
- 5. Intra-Socket **GPU**-Host
- 6. Inter-Socket GPU-Host
- 7. Inter-Node **GPU**-Host


8. Inter-Node GPU-GPU with IB adapter on remote socket

and more . . .

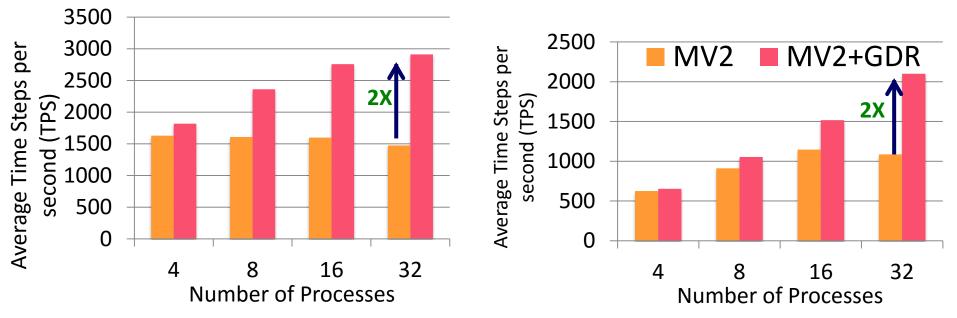
- For each path different schemes: Shared_mem, IPC, GPUDirect RDMA, pipeline ...
- Critical for runtimes to optimize data movement while hiding the complexity

GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GPU


- Standard MPI interfaces used for unified data movement
- Takes advantage of Unified Virtual Addressing (>= CUDA 4.0)
- Overlaps data movement from GPU with RDMA transfers

CUDA-Aware MPI: MVAPICH2-GDR 1.8-2.3 Releases

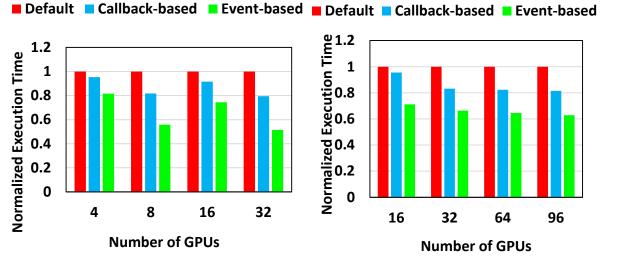
- Support for MPI communication from NVIDIA GPU device memory
- High performance RDMA-based inter-node point-to-point communication (GPU-GPU, GPU-Host and Host-GPU)
- High performance intra-node point-to-point communication for multi-GPU adapters/node (GPU-GPU, GPU-Host and Host-GPU)
- Taking advantage of CUDA IPC (available since CUDA 4.1) in intra-node communication for multiple GPU adapters/node
- Optimized and tuned collectives for GPU device buffers
- MPI datatype support for point-to-point and collective communication from GPU device buffers

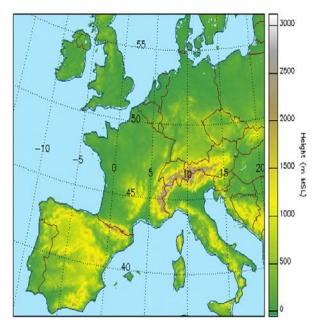

Optimized MVAPICH2-GDR Design

Application-Level Evaluation (HOOMD-blue)

64K Particles

256K Particles


- Platform: Wilkes (Intel Ivy Bridge + NVIDIA Tesla K20c + Mellanox Connect-IB)
- HoomdBlue Version 1.0.5
 - GDRCOPY enabled: MV2_USE_CUDA=1 MV2_IBA_HCA=mlx5_0 MV2_IBA_EAGER_THRESHOLD=32768 MV2_VBUF_TOTAL_SIZE=32768 MV2_USE_GPUDIRECT_LOOPBACK_LIMIT=32768 MV2_USE_GPUDIRECT_GDRCOPY=1 MV2_USE_GPUDIRECT_GDRCOPY_LIMIT=16384

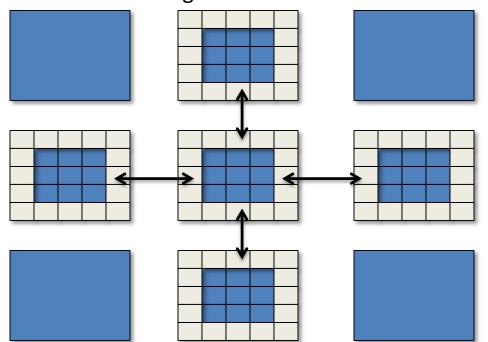

NRL (SC '17)

Application-Level Evaluation (Cosmo) and Weather Forecasting in Switzerland

CSCS GPU cluster

- 2X improvement on 32 GPUs nodes
- 30% improvement on 96 GPU nodes (8 GPUs/node)

<u>Cosmo model: http://www2.cosmo-model.org/content</u> /tasks/operational/meteoSwiss/


On-going collaboration with CSCS and MeteoSwiss (Switzerland) in co-designing MV2-GDR and Cosmo Application

C. Chu, K. Hamidouche, A. Venkatesh, D. Banerjee , H. Subramoni, and D. K. Panda, Exploiting Maximal Overlap for Non-Contiguous Data Movement Processing on Modern GPU-enabled Systems, IPDPS'16

Outline

- MVAPICH2-GPU with GPUDirect-RDMA (GDR)
- What's new with MVAPICH2-GDR
 - Maximal overlap in MPI Datatype Processing
 - Efficient Support for Managed Memory
 - Support for OpenPower and NVLink
 - Initial support for GPUDirect Async feature
- Streaming Support with IB Multicast and GDR
- High-Performance Deep Learning with MVAPICH2-GDR
- Conclusions

Non-contiguous Data Exchange

Halo data exchange

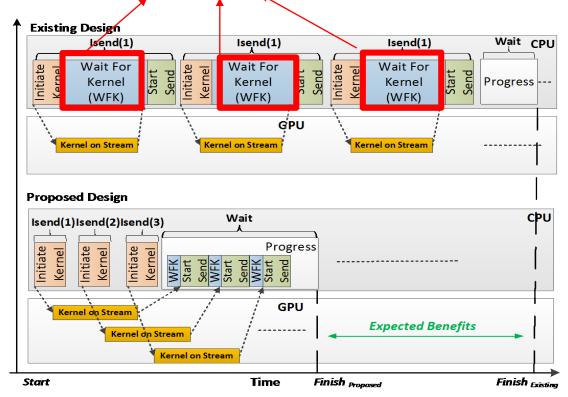
- Multi-dimensional data
 - Row based organization
 - Contiguous on one dimension
 - Non-contiguous on other dimensions
- Halo data exchange
 - Duplicate the boundary
 - Exchange the boundary in each iteration

MPI Datatype Processing (Computation Optimization)

- Comprehensive support
 - Targeted kernels for regular datatypes vector, subarray, indexed_block
 - Generic kernels for all other irregular datatypes
- Separate non-blocking stream for kernels launched by MPI library
 - Avoids stream conflicts with application kernels
- Flexible set of parameters for users to tune kernels
 - Vector
 - MV2_CUDA_KERNEL_VECTOR_TIDBLK_SIZE
 - MV2_CUDA_KERNEL_VECTOR_YSIZE
 - Subarray
 - MV2_CUDA_KERNEL_SUBARR_TIDBLK_SIZE
 - MV2_CUDA_KERNEL_SUBARR_XDIM
 - MV2_CUDA_KERNEL_SUBARR_YDIM
 - MV2_CUDA_KERNEL_SUBARR_ZDIM
 - Indexed_block
 - MV2_CUDA_KERNEL_IDXBLK_XDIM

MPI Datatype Processing (Communication Optimization)

Common Scenario

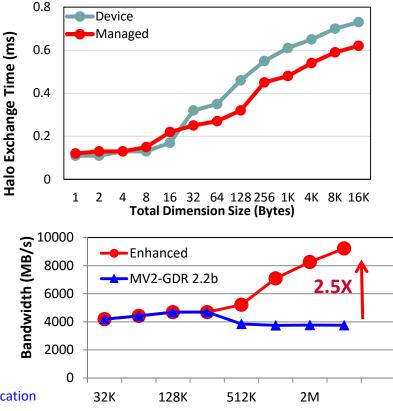

MPI_Isend (A,.. Datatype,...) MPI_Isend (B,.. Datatype,...) MPI_Isend (C,.. Datatype,...) MPI_Isend (D,.. Datatype,...)

MPI_Waitall (...);

...

*A, B...contain non-contiguous MPI Datatype

Waste of computing resources on CPU and GPU


Enhanced Support for GPU Managed Memory

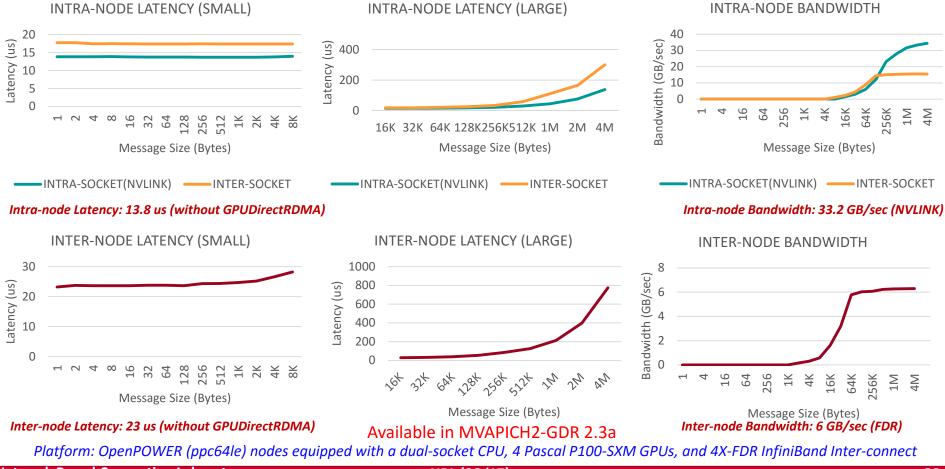
- CUDA Managed => no memory pin down
 - No IPC support for intranode communication
 - No GDR support for Internode communication
- Significant productivity benefits due to abstraction of explicit allocation and *cudaMemcpy()*
- Initial and basic support in MVAPICH2-GDR
 - For both intra- and inter-nodes use "pipeline through" host memory
- Enhance intranode managed memory to use IPC
 - Double buffering pair-wise IPC-based scheme
 - Brings IPC performance to Managed memory
 - High performance and high productivity
 - 2.5 X improvement in bandwidth
- OMB extended to evaluate the performance of point-to-point and collective communications using managed buffers
- Available since MVAPICH2-GDR 2.2

NRL (SC '17)

2D Stencil Performance for Halowidth=1

Message Size (bytes)

Network Based Computing Laboratory


Outline

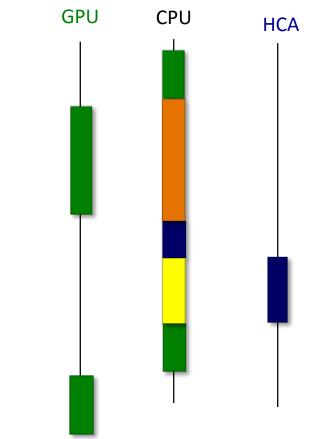
• MVAPICH2-GPU with GPUDirect-RDMA (GDR)

• What's new with MVAPICH2-GDR

- Maximal overlap in MPI Datatype Processing
- Efficient Support for Managed Memory
- Support for OpenPower and NVLink
- Initial support for GPUDirect Async feature
- Streaming Support with IB Multicast and GDR
- High-Performance Deep Learning with MVAPICH2-GDR
- Conclusions

MVAPICH2-GDR: Performance on OpenPOWER (NVLink + Pascal)

Network Based Computing Laboratory

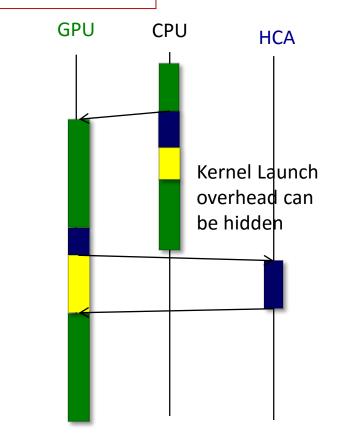

NRL (SC '17)

Overview of GPUDirect aSync (GDS) Feature: Current MPI+CUDA interaction

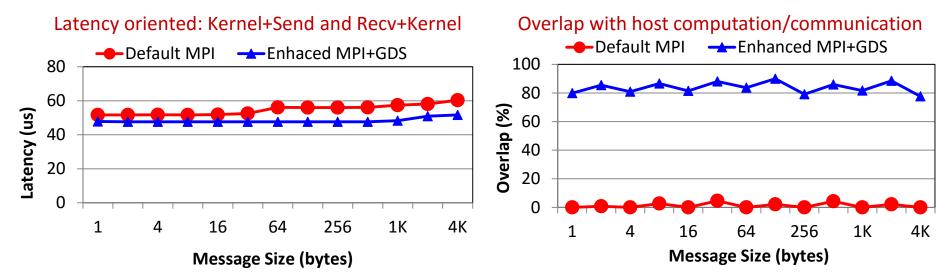
CUDA_Kernel_a<<>>>(A...., stream1) cudaStreamSynchronize(stream1) MPI_ISend (A,...., req1) MPI_Wait (req1) CUDA_Kernel_b<<<>>>(B...., stream1)

100% CPU control

- Limits the throughput of a GPU
- Limits the asynchronous progress
- Wastes CPU cycles



MVAPICH2-GDS: Decouple GPU Control Flow from CPU


CUDA_Kernel_a<<>>>(A...., stream1) MPI_ISend (A,...., req1, stream1) MPI_Wait (req1, stream1) (non-blocking from CPU) CUDA_Kernel_b<<<>>>(B...., stream1)

CPU offloads the compute, communication and synchronization tasks to GPU

- CPU is out of the critical path
- Tight interaction between GPU and HCA
- Hides the overhead of kernel launch
- Requires MPI semantics extensions
 - All operations are asynchronous from CPU
 - Extends MPI semantics with Stream-based semantics

MVAPICH2-GDS: Preliminary Results

- Latency Oriented: Able to hide the kernel launch overhead
 - 8-15% improvement compared to default behavior
- Overlap: Asynchronously to offload queue the Communication and computation tasks
 - 89% overlap with host computation at 128-Byte message size

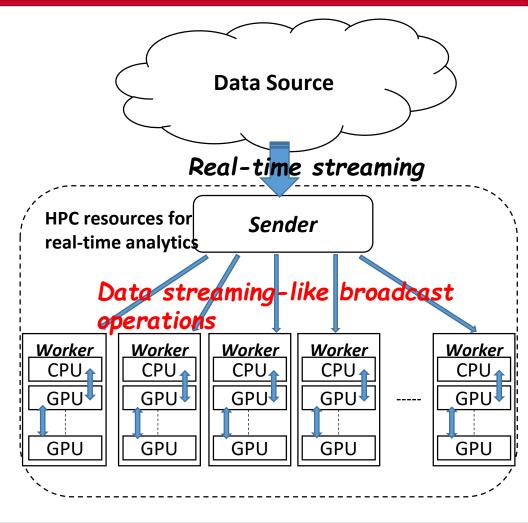
Intel Sandy Bridge, NVIDIA Tesla K40c and Mellanox FDR HCA CUDA 8.0, OFED 3.4, Each kernel is ~50us Network Based Computing Laboratory NRL (SC '17) Will be available in a public release soon

Outline

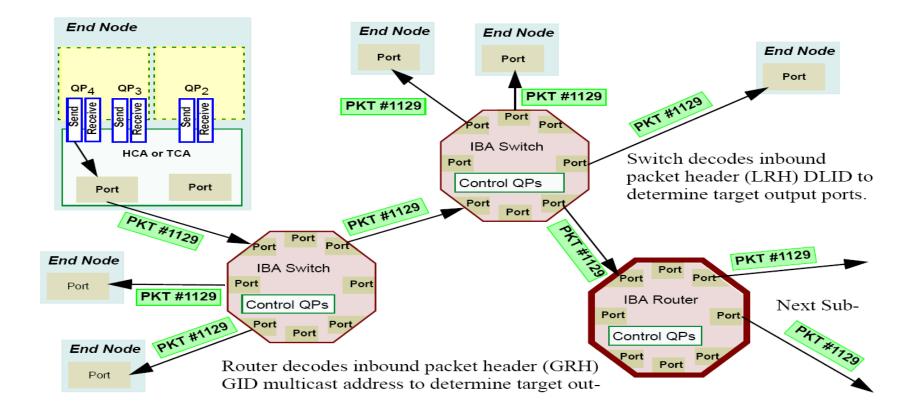
- MVAPICH2-GPU with GPUDirect-RDMA (GDR)
- What's new with MVAPICH2-GDR
 - Maximal overlap in MPI Datatype Processing
 - Efficient Support for Managed Memory
 - Support for OpenPower and NVLink
 - Initial support for GPUDirect Async feature
- Streaming Support with IB Multicast and GDR
- High-Performance Deep Learning with MVAPICH2-GDR
- Conclusions

Streaming Applications

- Examples surveillance, habitat monitoring, proton computed tomography (pCT), etc..
- Require efficient transport of data from/to distributed sources/sinks
- Sensitive to latency and throughput metrics



 Require HPC resources to efficiently carry out compute-intensive tasks


Src: http://www.symmetrymagazine.org/article/april-2012/proton-beam-on

Motivation

- Streaming applications on HPC systems
 - 1. Communication (MPI)
 - Broadcast-type operations
 - 2. Computation (CUDA)
 - Multiple GPU nodes as workers

IB Multicast Example

Problem Statement

- Can we design a GPU broadcast and allreduce mechanism that can deliver low latency and high throughput for streaming applications?
- Can we combine GPUDirect RDMA (GDR) and IB-MCAST features to
 - Achieve the best performance and scalability
 - Free-up the Host-Device PCIe bandwidth for application needs
- Can such design be extended to support heterogeneous configuration (host-to-device)?
- Can we design an efficient MCAST based broadcast for multi-GPU systems?
- Can we design an efficient reliability support on top of the UD-based MCAST broadcast?
- Can we design an efficient MCAST based allreduce for GPU systems?
- How can we demonstrate such benefits at benchmark and applications level?

Related Publications

- Handling Efficient and Reliable Broadcast on Multi-GPU Clusters
 - C.-H. Chu, K. Hamidouche, H. Subramoni, A. Venkatesh, B. Elton, and D. K. Panda. "Designing High Performance Heterogeneous Broadcast for Streaming Applications on GPU Clusters, "SBAC-PAD'16, Oct 2016.
 - C.-H. Chu, K. Hamidouche, H. Subramoni, A. Venkatesh, B. Elton, and D. K. Panda. "Efficient Reliability Support for Hardware Multicast-based Broadcast in GPU-enabled Streaming Applications," COMHPC 2016 (SC Workshop), Nov 2016.
- Optimizing Broadcast for GPU-based Deep Learning
 - Ching-Hsiang Chu, Xiaoyi Lu, Ammar A. Awan, Hari Subramoni, Jahanzeb Hashmi, Bracy Elton, and Dhabaleswar K. Panda, "Efficient and Scalable Multi-Source Streaming Broadcast on GPU Clusters for Deep Learning," *ICPP'17*.
- High-Performance Broadcast with IB-MCAST and GDR
 - Ching-Hsiang Chu, Xiaoyi Lu, Ammar A. Awan, Hari Subramoni, Bracy Elton, and Dhabaleswar K. Panda., "Exploiting Hardware Multicast and GPUDirect RDMA for Efficient Broadcast," *submitted to IEEE TPDS*. (Under review)

SL-based Design for Heterogeneous Configuration (Host-Device)

- Combining MCAST+GDR hardware features for heterogeneous configurations:
 - Source on the Host and destination on Device
 - SL design: Scatter at destination
 - Source: Data and Control on Host
 - Destinations: Data on Device and Control on Host
 - Combines IB MCAST and GDR features at receivers
 - CUDA IPC-based topology-aware intra-node broadcast
 - Minimize use of PCIe resources (Maximizing availability of PCIe Host-Device Resources)
- Available in MVAPICH2-GDR 2.3a

C.-H. Chu, K. Hamidouche, H. Subramoni, A. Venkatesh, B. Elton, and D. K. Panda. "Designing High Performance Heterogeneous Broadcast for Streaming Applications on GPU Clusters, "SBAC-PAD'16, Oct 2016. Node 1

Node N

CPU

GPL

HCA

HCA

IB

Switch

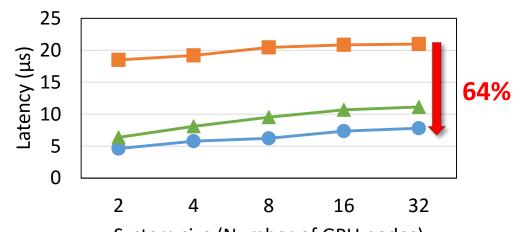
Multicast steps:

IB SL step

Source

IB

HCA


CPU

GPU

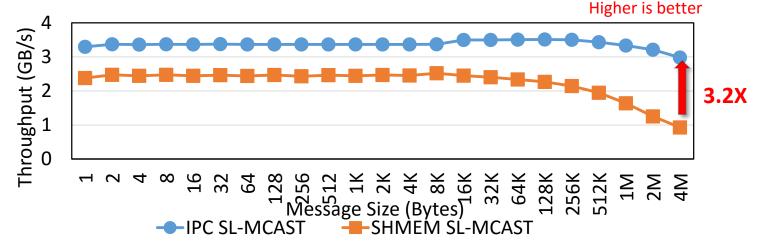
CPU

Scalability Evaluation of the Proposed Design

- Inter-node experiments @ Wilkes cluster, 32 GPUs, 1 GPU/node
 - 1K byte messages

-SL-MCAST -SGL-MCAST -Host-MCAST

System size (Number of GPU nodes)


• Maintain good Scalability while yielding up to 64% reduction of latency

C.-H. Chu, K. Hamidouche, H. Subramoni, A. Venkatesh, B. Elton, and D. K. Panda. "Designing High Performance Heterogeneous Broadcast for Streaming Applications on GPU Clusters, "SBAC-PAD'16, Oct 2016.

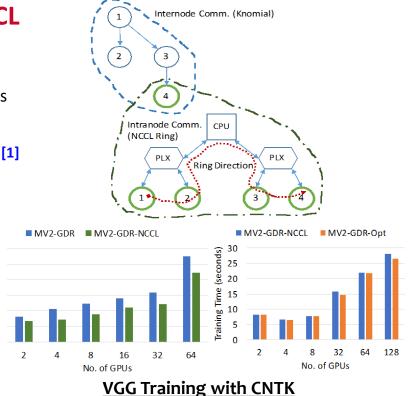
NRL (SC '17)

Benefits of the Availability of Host-Device PCI Resources

- Mimic the behavior of streaming applications @ CSCS cluster, 88 GPUs, 8
 NVIDIA K80 GPUs per node
 - Broadcast operations overlapped with application level Host-Device transfers

• Maintain near-peak throughput over all message sizes

C.-H. Chu, K. Hamidouche, H. Subramoni, A. Venkatesh, B. Elton, and D. K. Panda.


"Designing High Performance Heterogeneous Broadcast for Streaming Applications on GPU Clusters, "SBAC-PAD'16, Oct 2016.

Outline

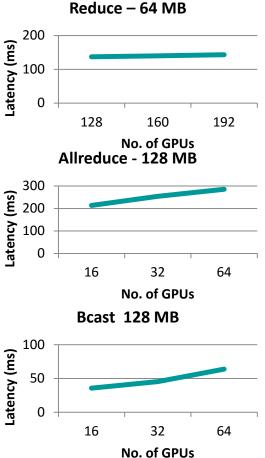
- MVAPICH2-GPU with GPUDirect-RDMA (GDR)
- What's new with MVAPICH2-GDR
 - Maximal overlap in MPI Datatype Processing
 - Efficient Support for Managed Memory
 - Support for OpenPower and NVLink
 - Initial support for GPUDirect Async feature
- Streaming Support with IB Multicast and GDR
- High-Performance Deep Learning with MVAPICH2-GDR
- Conclusions

Efficient Broadcast: MVAPICH2-GDR and NCCL

- NCCL 1.x had some limitations
 - Only worked for a single node; no scale-out on multiple nodes
 - Degradation across IOH (socket) for scale-up (within a node)
- We propose optimized MPI_Bcast design that exploits NCCL^[1]
 - Communication of very large GPU buffers
 - Scale-out on large number of dense multi-GPU nodes
- Hierarchical Communication that efficiently exploits:
 - CUDA-Aware MPI_Bcast in MV2-GDR
 - NCCL Broadcast for intra-node transfers
- Can pure MPI-level designs be done that achieve similar or better performance than NCCL-based approach? ^[2]

1. A. A. Awan, K. Hamidouche, A. Venkatesh, and D. K. Panda, Efficient Large Message Broadcast using NCCL and CUDA-Aware MPI for Deep Learning. In *Proceedings of the 23rd European MPI Users' Group Meeting* (EuroMPI 2016). [Best Paper Nominee]

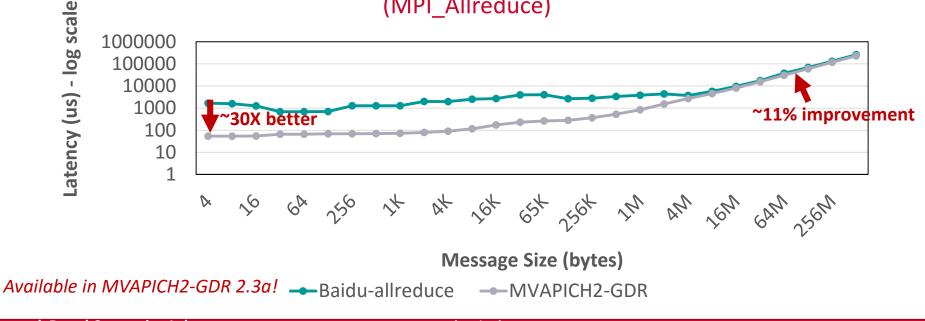
2. A. A. Awan, C-H. Chu, H. Subramoni, and D. K. Panda. Optimized Broadcast for Deep Learning Workloads on Dense-GPU InfiniBand Clusters: MPI or NCCL?, arXiv '17 (<u>https://arxiv.org/abs/1707.09414</u>)


Network Based Computing Laboratory

Large Message Optimized Collectives for Deep Learning

- MV2-GDR provides optimized collectives for large message sizes
- Optimized Reduce, Allreduce, and Bcast
- Good scaling with large number of GPUs
- Available since MVAPICH2-GDR 2.2GA

NRL (SC '17)

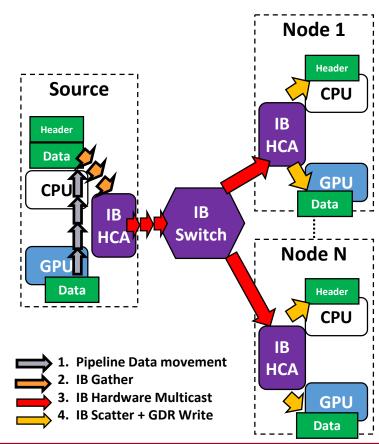


Network Based Computing Laboratory

MVAPICH2-GDR vs. Baidu-allreduce

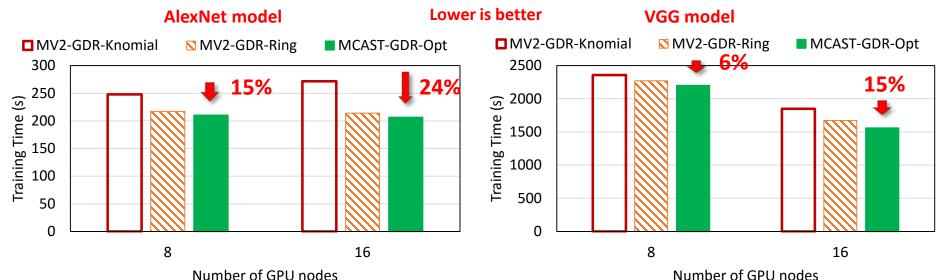
• Initial Evaluation shows promising performance gains for MVAPICH2-GDR 2.3a compared to Baidu-allreduce

> 8 GPUs (4 nodes log scale-allreduce vs MVAPICH2-GDR (MPI_Allreduce)


Exploiting GDR+IB-Mcast Design for Deep Learning Applications

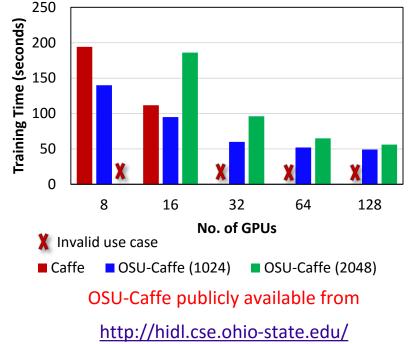
NRL (SC '17)

- Optimizing MCAST+GDR Broadcast for deep learning:
 - Source and destination buffers are on GPU Device
 - Typically very large messages (>1MB)
 - Pipelining data from Device to Host
 - Avoid GDR read limit
 - Leverage high-performance SL design
 - Combines IB MCAST and GDR features
 - Minimize use of PCIe resources on the receiver side
 - Maximizing availability of PCIe Host-Device Resources
 - Available MVAPICH2-GDR 2.3a!


Ching-Hsiang Chu, Xiaoyi Lu, Ammar A. Awan, Hari Subramoni, Jahanzeb Hashmi, Bracy Elton, and Dhabaleswar K. Panda, "Efficient and Scalable Multi-Source Streaming Broadcast on GPU Clusters for Deep Learning," ICPP'17.

Application Evaluation: Deep Learning Frameworks

- @ RI2 cluster, 16 GPUs, 1 GPU/node
 - Microsoft Cognitive Toolkit (CNTK) [https://github.com/Microsoft/CNTK]



- Reduces up to 24% and 15% of latency for AlexNet and VGG models
- Higher improvement can be observed for larger system sizes

C.-H. Chu, X. Lu, A. A. Awan, H. Subramoni, J. Hashmi, B. Elton, and D. K. Panda, Efficient and Scalable Multi-Source Streaming Broadcast on GPU Clusters for Deep Learning, ICPP'17.

High-Performance Deep Learning (HiDL) with MVAPICH2-GDR

- Caffe : A flexible and layered Deep Learning framework.
- Benefits and Weaknesses
 - Multi-GPU Training within a single node
 - Performance degradation for GPUs across different sockets
 - No Scale-out available
- OSU-Caffe: MPI-based Parallel Training
 - Enable Scale-up (within a node) and Scale-out (across multi-GPU nodes)
 - Scale-out on 64 GPUs for training CIFAR-10 network on CIFAR-10 dataset
 - Scale-out on 128 GPUs for training GoogLeNet network on ImageNet dataset

GoogLeNet (ImageNet) on 128 GPUs

Outline

- MVAPICH2-GPU with GPUDirect-RDMA (GDR)
- What's new with MVAPICH2-GDR
 - Maximal overlap in MPI Datatype Processing
 - Efficient Support for Managed Memory
 - Support for OpenPower and NVLink
 - Initial support for GPUDirect Async feature
- Streaming Support with IB Multicast and GDR
- High-Performance Deep Learning with MVAPICH2-GDR
- Conclusions

Conclusions

- MVAPICH2 optimizes MPI communication on InfiniBand clusters with GPUs
- Provides optimized designs for point-to-point two-sided and one-sided communication, datatype processing and collective operations
- Takes advantage of CUDA features like IPC and GPUDirect RDMA families
- New designs help to get good performance for streaming and deep learning applications

Thank You!

panda@cse.ohio-state.edu

Network-Based Computing Laboratory http://nowlab.cse.ohio-state.edu/

The MVAPICH2 Project http://mvapich.cse.ohio-state.edu/